
Catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

STOC 2020

Outline

The Tree Evaluation Problem

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem (TEP)
Motivation

Fact

TEP ∈ P

Conjecture

TEP 6∈ L

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

The Tree Evaluation Problem (TEP)

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k) bits.

TEP Input size: Θ(2hk2 log k).

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.

In other words, it can’t be solved by a uniform family of branching programs with
2O(h)kO(1) states.

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.
In other words, it can’t be solved by a uniform family of branching programs with
2O(h)kO(1) states.

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.

Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.

Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(kh))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.

Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(kh))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

1

1

3

3

1

2

1

2

1X

X

X

X

X

X

X

X

3 2

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

[r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2 [r1 = τ1 + x1 + x2]

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total.

Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.

Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y] and [r = z], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.

I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

Thanks!

	The Tree Evaluation Problem
	Motivation and definition
	Branching programs and pebbling games
	Lower bounds

	New algorithm
	Reversible computation
	Solving TEP

