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TEP Input size: Θ(2hk2 log k).

Conjecture

TEP 6∈ L
In other words, it can’t be solved in O(h + log k) space.
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A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.
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In other words, it can’t be solved by a uniform family of branching programs with
2O(h)kO(1) states.
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Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.
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TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(kh ))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.
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I the algorithm is read-once
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Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.
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Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]



Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.
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Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.
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Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3
P1 τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2 τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2 τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2
P−1

1

r3 ← r3 − r1 × r2 τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2
P−1

2

r3 ← r3 + r1 × r2 τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.



The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP



A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y ] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :
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` r

[v = 1] =

[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]
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First attempt

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x ]

I If v is a leaf:
I ri ← ri + [v = x ] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x ]× [` = y ]× [r = z ]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y ] and [r = z ], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.
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I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x ]× [` = y ]× [r = z ]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

Running in parallel reduces to 4 recursive calls instead of 4k2. The catch: need 3k
registers instead of 3.
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I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



I Pebbling algorithm: Θ((k + 1)h) states.
I “One-hot encoding” algorithm:

I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.
I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .



Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)
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Thanks!
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