Catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

STOC 2020

Outline

The Tree Evaluation Problem

New algorithm

The Tree Evaluation Problem

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr, M. Braverman, R. Santhanam 2010]

New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr, M. Braverman, R. Santhanam 2010]

New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr, M. Braverman, R. Santhanam 2010]

New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem (TEP)

Motivation

Fact
 $\mathrm{TEP} \in \mathrm{P}$

Conjecture
TEP $\notin \mathrm{L}$

The Tree Evaluation Problem (TEP)

The Tree Evaluation Problem (TEP)

> Parameters:
> - height $=3$
> - $\mathrm{k}=3$

The Tree Evaluation Problem (TEP)

TEP Input size: $\Theta\left(2^{h} k^{2} \log k\right)$.

Conjecture

TEP $\notin \mathrm{L}$
In other words, it can't be solved in $O(h+\log k)$ space.

The Tree Evaluation Problem

Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

A query is either a leaf or a cell in a table of an internal node.

A query is either a leaf or a cell in a table of an internal node.
A branching program is a directed graph of states. There are two kinds of state:

- query state: labelled with a query and has k outgoing edges labelled with the possible answers.
- final state: labelled with a number 1..k.

One state is the starting state.

Conjecture
TEP $\notin \mathrm{L}$
In other words, it can't be solved in $O(h+\log k)$ space.

Conjecture

TEP $\notin \mathrm{L}$

In other words，it can＇t be solved in $O(h+\log k)$ space．
In other words，it can＇t be solved by a uniform family of branching programs with $2^{O(h)} k^{O(1)}$ states．

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.
Corollary: A branching program with $2^{h} k^{h}$ states can solve TEP.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.
Corollary: A branching program with $2^{h} k^{h}$ states can solve TEP.
Theorem: h pebbles are needed.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.
Corollary: A branching program with $2^{h} k^{h}$ states can solve TEP.
Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs $\Omega\left(k^{h}\right)$ states.

Conjecture (TEP $\notin \mathrm{L}$)

TEP can't be solved by a uniform family of branching programs with $2^{O(h)} k^{O(1)}$ states.

Algorithm (pebbling)

The pebbling algorithm uses $\Theta\left((k+1)^{h}\right)$ states.
Conjecture (false)
A branching program for TEP requires $\Omega\left(k^{h}\right)$ states.

Conjecture (TEP $\notin \mathrm{L}$)

TEP can't be solved by a uniform family of branching programs with $2^{O(h)} k^{O(1)}$ states.

Algorithm (pebbling)

The pebbling algorithm uses $\Theta\left((k+1)^{h}\right)$ states.

Conjecture (false)

A branching program for TEP requires $\Omega\left(k^{h}\right)$ states.

Algorithm (new)

Our new algorithm uses $\left(O\left(\frac{k}{h}\right)\right)^{2 h+\epsilon} k^{\Theta(1)}$ states.
New algorithm defeats $\Omega\left(k^{h}\right)$ conjecture when $h \geq k^{1 / 2+\epsilon^{\prime}}$, but is still not log space.

The Tree Evaluation Problem

Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Lower bounds

Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

Lower bounds
Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

- the algorithm is read-once

Lower bounds

Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

- the algorithm is read-once
- or the algorithm is thrifty: never reads an irrelevent piece of the input.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP
\square

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

This rules out the following lower bound argument:

- At some point, you need to compute B.
- You need to remember $B(\log k$ bits) while computing C.
- So, every level of the tree adds $\log k$ bits you need to remember.

Bounded-width polynomial-size branching programs recognize exactly those languages in NC ${ }^{1}$. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R. Cleve 1992]

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Invert the whole sequence by running the inverse of each instruction in reverse order. (Computes -f.)

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Invert the whole sequence by running the inverse of each instruction in reverse order. (Computes -f.)
ℓ instuctions \Rightarrow branching program with $(\ell+1)|R|^{m}$ states.

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :
$-r_{1} \leftarrow r_{1}+x_{1}$

- $r_{1} \leftarrow r_{1}+x_{2}$

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :

- $r_{1} \leftarrow r_{1}+x_{1} \quad\left[r_{1}=\tau_{1}+x_{1}\right]$
- $r_{1} \leftarrow r_{1}+x_{2}$

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :

- $r_{1} \leftarrow r_{1}+x_{1} \quad\left[r_{1}=\tau_{1}+x_{1}\right]$
- $r_{1} \leftarrow r_{1}+x_{2}$
$\left[r_{1}=\tau_{1}+x_{1}+x_{2}\right]$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

$$
\begin{aligned}
& P_{1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \\
& P_{1}^{-1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2}^{-1} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2}
\end{aligned}
$$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

$$
\begin{aligned}
& P_{1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \\
& P_{1}^{-1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2}^{-1} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2}
\end{aligned}
$$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

$$
\begin{aligned}
& P_{1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \\
& P_{1}^{-1} \\
& r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \\
& P_{2}^{-1} \\
& r_{3} \leftarrow r_{3}+r_{1} \times r_{2}
\end{aligned}
$$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

$$
\begin{array}{llll}
& r_{1} & r_{2} & r_{3} \\
P_{1} & \tau_{1}+f_{1} & \tau_{2} & \tau_{3} \\
r_{3} \leftarrow r_{3}-r_{1} \times r_{2} & & & \\
P_{2} & & \\
r_{3} \leftarrow r_{3}+r_{1} \times r_{2} & & \\
P_{1}^{-1} & & \\
r_{3} \leftarrow r_{3}-r_{1} \times r_{2} & & \\
P_{2}^{-1} & & \\
r_{3} \leftarrow r_{3}+r_{1} \times r_{2} & &
\end{array}
$$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

	r_{1}	r_{2}	r_{3}
P_{1}	$\tau_{1}+f_{1}$	τ_{2}	τ_{3}
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	τ_{2}	$\tau_{3}-\tau_{1} \times \tau_{2}-f_{1} \times \tau_{2}$
P_{2}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$			
P_{1}^{-1}			
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$			
P_{2}^{-1}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$			

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

	r_{1}	r_{2}	r_{3}
P_{1}	$\tau_{1}+f_{1}$	τ_{2}	τ_{3}
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	τ_{2}	$\tau_{3}-\tau_{1} \times \tau_{2}-f_{1} \times \tau_{2}$
P_{2}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	$\tau_{2}+f_{2}$	$\tau_{3}+\tau_{1} \times f_{2}+f_{1} \times f_{2}$
P_{1}^{-1}			
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	τ_{1}	$\tau_{2}+f_{2}$	$\tau_{3}-\tau_{1} \times \tau_{2}+f_{1} \times f_{2}$
P_{2}^{-1}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	τ_{1}	τ_{2}	$\tau_{3}+f_{1} \times f_{2}$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

	r_{1}	r_{2}	r_{3}
P_{1}	$\tau_{1}+f_{1}$	τ_{2}	τ_{3}
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	τ_{2}	$\tau_{3}-\tau_{1} \times \tau_{2}-f_{1} \times \tau_{2}$
P_{2}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	$\tau_{2}+f_{2}$	$\tau_{3}+\tau_{1} \times f_{2}+f_{1} \times f_{2}$
P_{1}^{-1}			
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	τ_{1}	$\tau_{2}+f_{2}$	$\tau_{3}-\tau_{1} \times \tau_{2}+f_{1} \times f_{2}$
P_{2}^{-1}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	τ_{1}	τ_{2}	$\tau_{3}+f_{1} \times f_{2}$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

	r_{1}	r_{2}	r_{3}
P_{1}	$\tau_{1}+f_{1}$	τ_{2}	τ_{3}
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	τ_{2}	$\tau_{3}-\tau_{1} \times \tau_{2}-f_{1} \times \tau_{2}$
P_{2}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	$\tau_{1}+f_{1}$	$\tau_{2}+f_{2}$	$\tau_{3}+\tau_{1} \times f_{2}+f_{1} \times f_{2}$
P_{1}^{-1}			
$r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$	τ_{1}	$\tau_{2}+f_{2}$	$\tau_{3}-\tau_{1} \times \tau_{2}+f_{1} \times f_{2}$
P_{2}^{-1}			
$r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$	τ_{1}	τ_{2}	$\tau_{3}+f_{1} \times f_{2}$

Cost: need to run P_{1} and P_{2} twice each. But: no memory needs to be reserved.

The Tree Evaluation Problem

New algorithm
Reversible computation
Solving TEP

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
[v=1]=
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
[v=1]=
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
\begin{aligned}
& {[v=1]=} \\
& {[\ell=2] \times[r=1]+[\ell=2] \times[r=2]+[\ell=1] \times[r=3]}
\end{aligned}
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
\begin{aligned}
& {[v=1]=} \\
& {[\ell=2] \times[r=1]+[\ell=2] \times[r=2]+[\ell=1] \times[r=3]}
\end{aligned}
$$

Let f_{v} denote v 's table. In general,

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$
using multiplication algorithm: 4 recursive calls each to CheckNode to compute $[\ell=y]$ and $[r=z]$, using two extra registers j and j^{\prime}.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$ using multiplication algorithm: 4 recursive calls each to CheckNode to compute $[\ell=y]$ and $[r=z]$, using two extra registers j and j^{\prime}.

Needs three registers total.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$ using multiplication algorithm: 4 recursive calls each to CheckNode to compute $[\ell=y]$ and $[r=z]$, using two extra registers j and j^{\prime}.

Needs three registers total. Gives branching program with width 8 and length $\left(4 k^{2}\right)^{h-1}$.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm CheckNode (v, x, i)

Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$ using multiplication algorithm: 4 recursive calls each to CheckNode to compute $[\ell=y]$ and $[r=z]$, using two extra registers j and j^{\prime}.

Needs three registers total. Gives branching program with width 8 and length $\left(4 k^{2}\right)^{h-1}$. Worse than pebbling, which uses $\Theta\left((k+1)^{h}\right)$ states.

$$
\begin{aligned}
& \text { for }(y, z) \in[k]^{2}: \\
& \quad r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
\end{aligned}
$$

$$
\text { for } \begin{aligned}
& (y, z) \in[k]^{2}: \\
& \quad \bullet r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
\end{aligned}
$$

$$
\begin{aligned}
& r_{j} \leftarrow r_{j}+[\ell=1] \\
& r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
& r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=1] \\
& r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} \\
& r_{j} \leftarrow r_{j}-[\ell=1] \\
& r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
& r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=1] \\
& r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}}
\end{aligned}
$$

- for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$

$$
\begin{array}{lll}
r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} \\
r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}}
\end{array}
$$

- for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$

$$
\begin{array}{lll}
r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} \\
r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}}
\end{array}
$$

Running in parallel reduces to 4 recursive calls instead of $4 k^{2}$. The catch: need $3 k$ registers instead of 3.

- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- "One-hot encoding" algorithm:
- Recursively computes k-bit vector ($[v=1],[v=2], \ldots,[v=k]$).
- $3 k$ registers. 4 recursive calls $\Rightarrow \Theta\left(4^{h}\right) k^{2}$ total steps.
- Total $\Theta\left(2^{3 k} 4^{h} k^{2}\right)$ states.
- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- "One-hot encoding" algorithm:
- Recursively computes k-bit vector ($[v=1],[v=2], \ldots,[v=k]$).
- $3 k$ registers. 4 recursive calls $\Rightarrow \Theta\left(4^{h}\right) k^{2}$ total steps.
- Total $\Theta\left(2^{3 k} 4^{h} k^{2}\right)$ states.
- Beats pebbling when $h \gg \frac{k}{\log k}$.
- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- "One-hot encoding" algorithm:
- Recursively computes k-bit vector ($[v=1],[v=2], \ldots,[v=k]$).
- $3 k$ registers. 4 recursive calls $\Rightarrow \Theta\left(4^{h}\right) k^{2}$ total steps.
- Total $\Theta\left(2^{3 k} 4^{h} k^{2}\right)$ states.
- Beats pebbling when $h \gg \frac{k}{\log k}$.
- "Binary encoding" algorithm:
- Recursively compute log k bit vector representing node value.
- $3 \log k$ registers.
- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- "One-hot encoding" algorithm:
- Recursively computes k-bit vector ($[v=1],[v=2], \ldots,[v=k]$).
- $3 k$ registers. 4 recursive calls $\Rightarrow \Theta\left(4^{h}\right) k^{2}$ total steps.
- Total $\Theta\left(2^{3 k} 4^{h} k^{2}\right)$ states.
- Beats pebbling when $h \gg \frac{k}{\log k}$.
- "Binary encoding" algorithm:
- Recursively compute log k bit vector representing node value.
- $3 \log k$ registers.
- Degree $2 \log k$ multiplication requires k^{2} recursive calls instead of 4 .
- Total $k^{2 h+\Theta(1)}$ states. (Always worse than pebbling.)
- Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ states.
- "One-hot encoding" algorithm:
- Recursively computes k-bit vector ($[v=1],[v=2], \ldots,[v=k]$).
- $3 k$ registers. 4 recursive calls $\Rightarrow \Theta\left(4^{h}\right) k^{2}$ total steps.
- Total $\Theta\left(2^{3 k} 4^{h} k^{2}\right)$ states.
- Beats pebbling when $h \gg \frac{k}{\log k}$.
- "Binary encoding" algorithm:
- Recursively compute log k bit vector representing node value.
- $3 \log k$ registers.
- Degree $2 \log k$ multiplication requires k^{2} recursive calls instead of 4 .
- Total $k^{2 h+\Theta(1)}$ states. (Always worse than pebbling.)
- "Hybrid encoding algorithm" interpolates between the two, and uses $\left(O\left(\frac{k}{h}\right)\right)^{2 h+\epsilon} k^{\Theta(1)}$ states.
- Beats pebbling when $h \geq k^{1 / 2+\epsilon^{\prime}}$.

Conclusion

- We present a new algorithm for TEP: first improvement over classic "pebbling" algorithm since the problem was introduced in 2010.
- Still might be possible to prove TEP $\notin \mathrm{L}$, implying $\mathrm{P} \neq \mathrm{L}$.

Conclusion

- We present a new algorithm for TEP: first improvement over classic "pebbling" algorithm since the problem was introduced in 2010.
- Still might be possible to prove TEP $\notin \mathrm{L}$, implying $\mathrm{P} \neq \mathrm{L}$.

Future work

- Improve the algorithm. (Better ways to compute d-ary products? We're not the first to want them.)
- Find new TEP lower bounds that apply to these algorithms. (Old lower bounds apply only to read-once or "thrifty" algorithms.)

Thanks!

