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Abstract

We show how to visualize a set of pairwise sim-
ilarities between objects by using several differ-
ent two-dimensional maps, each of which cap-
tures different aspects of the similarity structure.
When the objects are ambiguous words, for ex-
ample, different senses of a word occur in dif-
ferent maps, so “river” and “loan” can both be
close to “bank” without being at all close to each
other. Aspect maps resemble clustering because
they model pair-wise similarities as a mixture
of different types of similarity, but they also re-
semble local multi-dimensional scaling because
they model each type of similarity by a two-
dimensional map. We demonstrate our method
on a toy example, a database of human word-
association data, a large set of images of hand-
written digits, and a set of feature vectors that
represent words.

1 Introduction

Given a large set of objects and the pairwise similarities
between them, it is often useful to visualize the similar-
ity structure by arranging the objects in a two-dimensional
space in such a way that similar pairs lie close together.
Methods like principal components analysis (PCA) or met-
ric multi-dimensional scaling (MDS) [2] are simple and
fast, but they minimize a cost function that is far more
concerned with modeling the large dissimilarities than the
small ones. Consequently, they do not provide good vi-
sualizations of data that lies on a curved low-dimensional
manifold in a high dimensional space because they do not
reflect the distances along the manifold [9]. Local MDS
[8] and some more recent methods such as local linear
embedding (LLE) [7], maximum variance unfolding [10],
or stochastic neighbour embedding (SNE) [3] attempt to
model local distances (strong similarities) accurately in the
two-dimensional visualization at the expense of modeling

larger distances (small similarities) inaccurately.

The SNE objective function is difficult to optimize effi-
ciently, but it leads to much better solutions than methods
such as LLE. In LLE, the only thing that stops all the ob-
jects collapsing to a single point is a constraint on their co-
variance, and this constraint can sometimes be satisfied by
a “curdled” solution in which there are several widely sep-
arated collapsed subsets. SNE is based on a probabilistic
model which suggests a new approach to producing better
visualizations: Instead of using just one two-dimensional
map as a model of the similarities between objects, use
many different two-dimensional maps and combine them
into a single model of the similarity data by treating them
as a mixture model. This is not at all the same as find-
ing, say, a four-dimensional map and then displaying two
orthogonal two-dimensional projections [7]. In that case,
the four-dimensional map is the product of the two two-
dimensional maps and a projection can be very misleading
because it can put points that are far apart in 4-D close to-
gether in 2-D. In a mixture of maps, being close together
in any map means that two objects really are similar in the
mixture model.

2 Stochastic Neighbor Embedding

SNE starts by converting high-dimensional distance or sim-
ilarity data into a set of conditional probabilities of the form
pj|i, each of which is the probability that one object, i,
would stochastically pick another object j as its neighbor
if it was only allowed to pick one neighbor. These condi-
tional probabilities can be produced in many ways. In the
word association data we describe later, subjects are asked
to pick an associated word, so pj|i is simply the fraction
of the subjects who pick word j when given word i. If
the data consists of the coordinates of objects in a high-
dimensional Euclidean space, it can be converted into a set
of conditional probabilities of the form pj|i for each object
i by using a spherical Gaussian distribution centered at the
high-dimensional position of i, xi, as shown in figure 1.
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Figure 1: A spherical Gaussian distribution centered at xi

defines a probability density at each of the other points.
When these densities are normalized, we get a probability
distribution, Pi, over all of the other points that represents
their similarity to i.

We set pi|i = 0, and for j 6= i,

pj|i =
exp(−||xi − xj ||

2/2σ2

i )
∑

k 6=i exp(−||xi − xk||2/2σ2

i )
(1)

The same equation can be used if we are only given the
pairwise distances between objects, ||xi − xj ||. The vari-
ance of the Gaussian, σ2

i , can be adjusted to vary the en-
tropy of the distribution Pi which has pj|i as a typical term.
If σ2

i is very small the entropy will be close to 0 and if it is
very large the entropy will be close to log

2
(N − 1), where

N is the number of objects. We typically pick a number
M � N and adjust σ2

i by binary search until the entropy
of Pi is within some small tolerance of log

2
M .

The goal of SNE is to model the pj|i by using conditional
probabilities, qj|i, that are determined by the locations yi

of points in a low-dimensional space as shown in figure 2:

qj|i =
exp(−||yi − yj ||

2)
∑

k 6=i exp(−||yi − yk||2)
(2)

For each object, i, we can associate a cost with a set of
low-dimensional y locations by using the Kullback-Liebler
divergence to measure how well the distribution Qi models
the distribution Pi

C =
∑

i

KL(Pi||Qi) =
∑

i

∑

j 6=i

pj|i log
pj|i

qj|i
(3)

To improve the model, we can move each yi in the direc-
tion of steepest descent of C. It is shown in [3] that this
gradient optimization has a very simple physical interpre-
tation (see figure 3). yi is attached to each yj by a spring
which exerts a force in the direction yi − yj . The magni-
tude of this force is proportional to the length of the spring,
||yi − yj ||, and it is also proportional to the spring stiff-
ness which equals the mismatch (pj|i−qj|i)+(pi|j −qi|j).
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Figure 2: A circular Gaussian distribution centered at yi

defines a probability density at each of the other points.
When these densities are normalized, we get a probabil-
ity distribution over all of the other points that is our low-
dimensional model, Qi of the high-dimensional Pi.

Steepest descent in the cost function corresponds to follow-
ing the dynamics defined by these springs, but notice that
the spring stiffnesses keep changing. Starting from small
random y values, steepest descent finds a local minimum
of C. Better local minima can be found by adding Gaus-
sian noise to the y values after each update. Starting with
a high noise level, we decay the noise fairly rapidly to find
the approximate noise level at which structure starts to form
in the low-dimensional map. A good indicator of the emer-
gence of structure is that a small decrease in the noise level
leads to a large decrease in the cost function. Then we re-
peat the process, starting the noise level just above the level
at which structure emerges and anealing it much more gen-
tly. This allows finding low-dimensional maps that are sig-
nificantly better minima of C.
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Figure 3: The gradient of the cost function in Eq. 3
with respect yi has a physical interpretation as the resul-
tant force produced by springs attaching yi to each of the
other points. The spring between i and j exerts a force
that is proportional to its length and is also proportional to
(pj|i − qj|i) + (pi|j − qi|j).

2.1 Symmetric SNE

The version of SNE introduced by [3] is based on minimiz-
ing the divergences between conditional distributions. An
alternative is to define a single joint distribution over all



non-identical ordered pairs:

pij =
exp(−||xi − xj ||

2/2σ2)
∑

k<l exp(−||xk − xl||2/2σ2)
(4)

qij =
exp(−||yi − yj ||

2)
∑

k<l exp(−||yk − yl||2)
(5)

Csym = KL(P ||Q) =
∑

i6=j

pij log
pij

qij

(6)

This leads to simpler derivatives, but if one of the high-
dimensional points, j, is far from all the others, all of the p·j

will be very small. To overcome this problem it is possible
to replace Eq. 4 by pij = 0.5(pj|i + pi|j) where pj|i and
pi|j are defined using Eq. 1. When j is far from all the other
points, all of the pj|i will be very small, but the p·|j will sum
to 1. Even when pij is defined by averaging the conditional
probabilities, we still get good low-dimensional maps using
the derivatives given by Eqs. 5 and 6. Symmetric SNE will
not be used again until section 6.

3 Aspect Maps

Instead of using a single two-dimensional map to define
qj|i for the asymmetric version of SNE, we can allow i and
j to occur in several different two-dimensional maps. Each
object, i, has a mixing proportion πm

i in each map, m, and
the mixing proportions are constrained to add to 1 for each
object:

∑

m πm
i = 1. The different maps combine to define

qj|i as follows:

qj|i =

∑

m πm
i πm

j e−dm
i,j

zi

(7)

where

dm
i,j = ‖ym

i − ym
j ‖2, zi =

∑

h

∑

m

πm
i πm

h e−dm
i,h

Provided there is at least one map in which i is close to j
and provided the versions of i and j in that map have high
mixing proportions, it is possible for qj|i to be quite large
even if i and j are far apart in all the other maps. In this
respect, using a mixture model is very different from sim-
ply using a single space that has extra dimensions, because
points that are far apart on one dimension cannot have a
high qj|i no matter how close together they are on the other
dimensions.

To optimize the aspect maps model, we used Carl
Rasmussen’s “minimize” function which is available at
www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.
The gradients are derived below.

∂C

∂πm
i

= −
∑

k

∑

`6=k

p`|k
∂

∂πm
i

[log q`|kzk − log zk]
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∑
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Rather than using the mixing proportions πm
i themselves as

parameters of the model, we defined parameters wm
i , and

defined

πm
i =

e−wm
i

∑

m′ e−wm′

i

.

This avoids the need to constrain the mixing proportions to
lie between 0 and 1, and it also prevents them going all the
way to 0. We get a new gradient

∂C

∂wm
i

= πm
i

[(

∑

m′

∂C

∂πm′

i

πm′

i

)

−
∂C

∂πm
i

]

The distance between points i and j in map m appears as
both dm

i,j and dm
j,i. If ym

i,c denotes the cth coordinate of ym
i ,



we have

∂C

∂ym
i,c

= 2

(

∂C

∂dm
i,j

+
∂C

∂dm
j,i

)

(ym
i,c − ym

j,c).
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∂dm
i,j

(log p`|k − log q`|k)

= −
∑

k

∑

`6=k

p`|k
∂
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4 Reconstructing two maps from one set of
similarities

As a simple illustration of aspect maps, we constructed a
toy problem in which the assumptions underlying the use
of aspect maps are correct. For this toy problem, the low-
dimensional space has as many dimensions as the high-
dimensional space. Consider the two maps shown in the
top row of figure 4. We gave each object a mixing propor-
tion of 0.5 in each map and then used Eq. 7 to define a set
of conditional probabilities pj|i which can be modeled per-
fectly by the two maps. In other words, each of the top two
maps contribute a matrix of conditional probabilities pj|i,
and the two matrices are averaged. This single average ma-
trix contains enough information to specify both maps. The
question is whether our optimization procedure can recon-
struct both maps from one set of conditional probabilities
if the objects start with random coordinates in each map.
Figure 4 shows that both maps can be recovered up to re-
flection, translation and rotation.

5 Modeling human word association data

The University of South Florida has made a database of
human word associations available on the web. Partici-
pants were presented with a list of English words as cues,
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Figure 4: The two maps in the top row can be reconstructed
correctly from a single set of pairwise similarities. Using
a randomly chosen one-to-one mapping between points in
the top two maps, the similarities are defined using Eq. 7
with all mixing proportions fixed at 0.5.

and asked to respond to each word with a word which
was “meaningfully related or strongly associated” [6]. The
database contains 5018 cue words, with an average of 122
responses to each. This data lends itself naturally to SNE:
simply define the probability pj|i as the fraction of times
word j was picked in response to word i.

Ambiguous words in the dataset cause a problem. For ex-
ample, SNE might want to put “fire” close to the words
“wood” and “job”, even though “wood” and “job” should
not be put close to one another. A solution is to use the as-
pect maps version, AMSNE, and consider the word “fire”
as a mixture of two different meanings. In one map “fire”
is a source of heat and should be put near “wood”, and in
the other “fire” is something done to employees and should
be close to “job”. Ambiguity is not the only reason a word
might belong in two different places: as another example,
“death” might be similar to words like “sad” and “cancer”
but also to “destruction” and “military”, even though “can-
cer” is not usually seen as being similar to “military”.

When modelling the free association data, we found that
AMSNE would put many unrelated clusters of words in the
same map far apart. To make the individual maps more co-
herent, we added a penalty that kept each map small, thus
discouraging any one map from containing several unre-
lated clusters. The penalty term λ

2

∑

i

∑

m ‖ym
i ‖2 is sim-

ply added to the cost function in Eq. 3.
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Figure 5: Two of the 50 aspect maps for the word associ-
ation data. Each map models a different sense of “can”.
Each word is represented by a circle whose area is propor-
tional to its mixing proportion. These two maps also reveal
the respectable and the less respectable perceptions of beer.

After some experimentation, we fitted the free association
data with the aspect maps model using 50 maps with λ set
to 0.48. Using a different number of maps or a different
value of λ gives visualisations which are almost as good.
In order to speed the optimization, we only used the 1000
cue words that were most often given as responses. Four of
the resulting maps are shown in figures 5 and 6. In figure 5
the two different maps model the very different similarities
induced by two different meanings of the word “can”. In
figure 6 we see two different contexts in which the word
“field” is used. Whether these should be called different
meanings of the word “field” is an open question that can
be answered by linguistic intuitions of lexicographers or
by looking at whether two “meanings” model the observed
similarity judgements better than one.
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Figure 6: Two of the 50 aspect maps for the word associa-
tion data. Each map models a different sense of “field”.

6 UNI-SNE: A degenerate version of aspect
maps

On some datasets, we found that fitting two aspect maps led
to solutions that seemed strange. One of the aspect maps
would keep all of the objects very close together, while the
other aspect map would create widely separated clusters of
objects. This behaviour can be understood as a sensible
way of dealing with a problem that arises when using a 2-
D space to model a set of high-dimensional distances that
have an intrinsic dimensionality greater than 2. In the best
2-D model of the high-dimensional distances, the objects in
the middle will be crushed together too closely and the ob-
jects around the periphery will be much too far from other
peripheral objects1. Using the physical analogy of figure
3, there will be many weak but very stretched springs be-
tween objects on opposite sides of the 2-D space and the
net effect of all these springs will be to force objects in the

1To flatten a hemispherical shell into a disk, for example, we
need to compress the center of the hemisphere and stretch or tear
its periphery.
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Figure 7: The result of applying the symmetric version of
SNE to 5000 digit images from the MNIST dataset. The 10
digit classes are not well separated.

middle together.

A “background” map in which all of the objects are very
close together gives all of the qj|i a small positive con-
tribution. This is sufficient to ensure that qj|i is at least
as great as pj|i for objects that are significantly further
apart than the average separation. When qj|i > pj|i, the
very stretched springs actually repel distant objects and
this causes the “foreground” map to expand, thus provid-
ing enough space to allow clusters of similar objects to be
separated from each other.

If we simply constrain all of the objects in the background
map to have identical locations and mixing proportions, we
get a degenerate version of aspect maps that is equivalent
to combining SNE with a uniform background model. We
chose to implement this idea for the simpler, symmetric
version of SNE so Eq. 5 becomes:

qij =
(1 − λ) exp(−||yi − yj ||

2)
∑

k<l exp(−||yk − yl||2)
+

2λ

N(N − 1)
(8)

We call this robust version “UNI-SNE” and it often gives
much better visualizations than SNE. We tested UNI-SNE
on the MNIST dataset of handwritten digit images. It is
very difficult to embed this data into a 2-D map in such a
way that very similar images are close to one another and
the class structure of the data is apparent. Using the first
two principal components, for example, produces a map in
which the classes are hopelessly scrambled [4]. A nonlin-
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Figure 8: If 0.2 of the total probability mass is used to
provide a uniform background probability distribution, the
slight attraction between dissimilar objects is replaced by
slight repulsion. This causes expansion and rearrangement
of the map which makes the class boundaries far more ap-
parent.

ear version of PCA [4] does much better but still fails to
separate the individual classes within the clusters 4,7,9 and
3,5,8.

We first used principal components analysis on all 60,000
MNIST training images to reduce each 28×28 pixel image
to a 30-dimensional vector. Then we applied the symmet-
ric version of SNE to 5000 of these 30-dimensional vectors
with an equal number from each class. To get the pij we
averaged pi|j and pj|i each of which was computed using a
perplexity of 30 (see [3] for details). We ran SNE with ex-
ponentially decaying jitter, stopping after 1100 parameter
updates when the KL divergence between the pij and the
qij was changing by less than .0001 per iteration. Figure 7
shows that SNE is also unable to separate the clusters 4,7,9
and 3,5,8 and it does not cleanly separate the clusters for
0, 1, 2, and 6 from the rest of the data. Starting with the
solution produced by symmetric SNE, we ran UNI-SNE
for a further 1500 parameter updates with no jitter but with
0.2 of the total probability mass uniformly distributed be-
tween all pairs. Figure 8 shows that this produced a dra-
matic improvement in revealing the true structure of the
data. It also reduced the KL divergence in Eq. 6 from
2.47 to 1.48. UNI-SNE is better than any other visualiza-
tion method we know of for separating the classes in this
dataset, though we have not compared it with the recently



developed method called “maximum variance unfolding”
[10] which, like UNI-SNE, tries to push dissimilar objects
far apart.

We have also tried applying UNI-SNE to a set of 100-
dimensional real-valued feature vectors each of which rep-
resents one of the 500 most common words or symbols in
a dataset of AP newswire stories[1]. The corpus contains
16,000,000 words and a feature vector was extracted for
each of the 18,000 commonest words or symbols by fitting
a model (to be described elsewhere) that tries to predict
the features of the current word from the features of the
two previous words. We used UNI-SNE to see whether the
learning procedure was extracting sensible representations
of the words. Figure 9 shows that the feature vectors cap-
ture the strong similarities quite well. Many sensible clus-
ters and clusters of clusters are preserved in the 2-D map.
The small integers, for example, form a cluster that is next
to the small ordinals and close to the approximate quanti-
ties. The durations “day” “week” “month” and “year” are
beside their plural forms even though the plural forms are
treated as unrelated words. An intriguing finding is that on
many different runs, the quadrilateral formed by “is” “was”
“are” and “were” has the same handedness. This allows the
2-D space in this vicinity to model both the singular/plural
and present/past distinctions.

7 Discussion

The main weakness of all the variations of SNE is that the
optimization is a non-convex problem that requires rela-
tively slow iterative techniques. These techniques can be
improved by using better search directions[5], but it is hard
to combine this improvement with the jittering needed to
find the best solutions. For very large datasets, the opti-
mization can be made much faster by estimating the full
gradient from mini-batches each containing a few hundred
objects. The interactions between objects in different mini-
batches are ignored, but this effect is not too serious if the
full dataset is frequently re-partitioned into random mini-
batches. The noise in the gradient-estimates caused by the
mini-batches is not a problem when jittering is being used
to escape poor local optima. Unfortunately, the solutions
found using mini-batches are poorer than the ones found
using the full gradient.

SNE is based on a probabilistic formulation of the task of
using a low-dimensional map to represent close similari-
ties. The fact that this formulation lends itself to mixture
modeling was pointed out in [3], but was only used for a
trivial example in which the mixing proportions were all
fixed in advance. One main contribution of this paper is to
demonstrate the feasibility of aspect maps on a real dataset.
Another contribution is to show that the maps found by
SNE can be considerably improved by using a mixture of a
map and a uniform background distribution. In particular,

UNI-SNE is much better than SNE at showing the bound-
aries between classes.
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Figure 9: A map produced by applying UNI-SNE to 100-dimensional feature vectors that were learned for the 500 com-
monest words in the AP news dataset.


