
The Structure of Catalytic Space: Capturing Randomness and
Time via Compression

James Cook

falsifian@falsifian.org

Unaffiliated

Toronto, Canada

Jiatu Li
∗

jiatuli@mit.edu

MIT

Cambridge, United States

Ian Mertz
†

ian.mertz@warwick.ac.uk

University of Warwick

Coventry, United Kingdom

Edward Pyne
‡

epyne@mit.edu

MIT

Cambridge, United States

Abstract
In the catalytic logspace (CL) model of (Buhrman et. al. STOC 2013),

we are given a small work tape, and a larger catalytic tape that has

an arbitrary initial configuration. We may edit this tape, but it must

be exactly restored to its initial configuration at the completion

of the computation. This model is of interest from a complexity-

theoretic perspective as it gains surprising power over traditional

space. However, many fundamental structural questions remain

open.

We substantially advance the understanding of the structure of

CL, addressing several questions raised in prior work. Our main

results are as follows.

(1) We unconditionally derandomize catalytic logspace:CBPL =

CL.
(2) We show time and catalytic space bounds can be achieved

separately if and only if they can be achieved simultaneously:

any problem in CL ∩ P can be solved in polynomial time-

bounded CL.
(3) We characterize deterministic catalytic space by the intersec-

tion of randomness and time: CL is equivalent to polytime-

bounded, zero-error randomized CL.
Our results center around the compress–or–random framework.

For the second result, we introduce a simple yet novel compress–or–
compute algorithm which, for any catalytic tape, either compresses

the tape or quickly and successfully computes the function at hand.

For our first result, we further introduce a compress–or–compress–
or–random algorithm that combines runtime compression with a

second compress–or–random algorithm, building on recent work

on distinguish-to-predict transformations and pseudorandom gen-

erators with small-space deterministic reconstruction.

∗
Supported by MIT Akamai Fellowship and the National Science Foundation under

Grant CCF-2127597.

†
Supported by Royal Society University Research Fellowship URF R1 191059.

‡
Supported by a Jane Street Graduate Research Fellowship.

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718112

CCS Concepts
• Theory of computation→ Complexity classes; Pseudoran-
domness and derandomization.

Keywords
Catalytic Computation, Derandomization, Complexity

ACM Reference Format:
James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. 2025. The Structure

of Catalytic Space: Capturing Randomness and Time via Compression. In

Proceedings of the 57th Annual ACM Symposium on Theory of Computing
(STOC ’25), June 23–27, 2025, Prague, Czechia. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3717823.3718112

1 Introduction
How useful is access to a full hard drive? The catalytic logspace
(CL) model, introduced by Buhrman, Cleve, Koucký, Loff, and Speel-

man [2], models this question by augmenting a logspace machine

𝑀 with a polynomially large extra work tape, called the catalytic
tape; the catch is that this tape begins in some arbitrary initial

configurationw, and while it can be edited during the computation,

at the end it must be reset to its initial w.

Such a model naturally sits between L and PSPACE, but in many

preexisting contexts [9, 13, 18, 23] it was strongly assumed that full

memory cannot be in any way useful for unrelated computation,

and so it seemed likely that CL would be equal to L. Remarkably,

however, [2] showed that CL is likely to be strictly more powerful
thanL: they showed thatCL contains logspace-uniformTC1

, a class

known to contain non-deterministic logpsace (NL), randomized

logspace (BPL), and more. Subsequently, there have been several

further works exploring the power of catalytic computation [1, 3, 5–

8, 10, 14, 15, 22, 26] (see surveys of Koucký [21] and Mertz [24] for

an overview).

In this work we study the structural complexity of catalytic

computation. We show multiple unconditional relations between

some of the most well-studied catalytic classes, and obtain new

conditional results under substantially weaker assumptions than

previously known.

554

https://orcid.org/0009-0003-4018-1352
https://orcid.org/0000-0003-2358-3141
https://orcid.org/0000-0002-4715-933X
https://orcid.org/0000-0002-3454-2057
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3717823.3718112
https://doi.org/10.1145/3717823.3718112

STOC ’25, June 23–27, 2025, Prague, Czechia James Cook, Jiatu Li, Ian Mertz, and Edward Pyne

1.1 Derandomizing Catalytic Space
Our first result relates to randomized catalytic computation. Intro-

duced by [10], the class CBPL is the natural extension of random-

ized logspace (BPL) to the catalytic setting. We note two important

features of this model: the random coins are accessed in a read-once

fashion (analogously to BPL), and the machine must always reset

the catalytic tape, no matter the sequence of random bits.

The line of work on derandomizing randomized logspace (i.e.

proving BPL = L) has been highly fruitful, resulting in the state

of the art result of [16, 28] that randomized space 𝑠 can be simu-

lated deterministically in space 𝑠3/2−𝑜 (1) . In the catalytic setting,

however, derandomization — i.e. CBPL = CL, posed as an open

question in Mertz [24] — was only known assuming strong circuit

lower bounds [10].

We unconditionally derandomize catalytic computation.

Theorem 1.1.

CBPL = CL.

This is among the first unconditional derandomization results

known for uniform computation. Note that L ⊆ CL ⊆ PSPACE,
and PSPACE = BPPSPACE is known whereas BPL = L is an open

question, and so our results can be thought of as progress in this

direction. However, we also know that L ⊆ CL ⊆ ZPP, and both

BPL = L and ZPP = P are open, giving a curious case where a

natural intermediate class can be derandomized.

1.2 The Power of Time-Bounded Catalytic Space
Our second setting is motivated by a central open question in

catalytic computing: is CL contained in P? In their first paper in-

troducing CL, Buhrman et al. [2] showed that CL ⊆ ZPP; thus
CL ⊆ P under the widely-believed (uniform) assumption that

ZPP = P. However, putting aside the long-standing intractabil-

ity of derandomizing ZPP, even finding such a derandomization

does not necessarily give a catalytic polynomial time algorithm.

In particular, let CLP be the set of problems solvable by catalytic

logspace algorithms that run in worst-case polynomial time; while

CLP ⊆ CL ∩ P is immediate, the converse was not known. The

work of [10] showed that CL = CLP follows from strong circuit

lower bounds, but no such conclusion was known from any uniform

assumption.

We resolve this question and show that functions which are

efficiently solvable with respect to both time and catalytic space

individually admit algorithms which are efficient with respect to

both simultaneously.

Theorem 1.2.

CL ∩ P = CLP.

We note two corollaries of this result. First, showing CL ⊆ P is

equivalent to making catalytic algorithms run in worst-case poly-

nomial time.

Corollary 1.3.

CL ⊆ P ⇐⇒ CL = CLP.

One can view this result in a positive sense, and as a barrier. On

the positive side, a proof of CL ⊆ P gives a further, potentially

stronger result for free. On the barrier side, it is provably impossible

to take advantage of the plentiful space afforded byP to simulateCL,
without simultaneously improving the (catalytic) space-bounded

inclusion.

Second, derandomization of ZPP scales down and implies the

collapse of two subclasses CL and CLP of ZPP.

Corollary 1.4.

ZPP = P =⇒ CL = CLP.

Towards proving CL = CLP. Corollary 1.4 can be strengthened

to show that CL = CLP follows from the derandomization of a

syntactic subclass LOSSY of ZPP that has been studied by several

recent works [4, 17, 19, 20, 22].

Definition 1.5. The complexity class LOSSY is defined as the

languages that are polynomial-time reducible to the following total

search problem called LossyCode: Given a pair of Boolean circuits

𝐶 : {0, 1}𝑛 → {0, 1}𝑛−1 and 𝐷 : {0, 1}𝑛−1 → {0, 1}𝑛 , find some

𝑥 ∈ {0, 1}𝑛 such that 𝐷 (𝐶 (𝑥)) ≠ 𝑥 .

Indeed, we unconditionally prove that CL ⊆ LOSSY.

Theorem 1.6.

CL ⊆ LOSSY(⊆ ZPP) .

Together with Corollary 1.3, we show that LOSSY = P is suf-

ficient to prove CL = CLP. This strengthens Corollary 1.4 as

LOSSY ⊆ ZPP, and it is not known whether LOSSY = ZPP,
and constitutes the first improvement on the assumptions required

to prove CL ⊆ P.1

1.3 Synthesis: Characterizing Catalytic Space
via Randomness and Time

Combining our two lines of work gives a surprising characterization

of CL: in exchange for granting our catalytic machine zero-error
randomness,

2
we may guarantee that it runs in worst-case polyno-

mial time, and this characterization is exact. We follow our previous

convention for CLP and dub the latter class CZPLP.

Theorem 1.7.

CL = CZPLP.

While Theorem 1.1 can be thought of as bounding the power of

randomness in catalytic computing, the forward direction of Theo-

rem 1.7 gives a highly nontrivial use for randomness in the time-

bounded catalytic model.

Theorem 1.7 makes progress towards resolving CL ⊆ P; not
only do we weaken the derandomization hypothesis sufficient to
resolve the question — CZPLP ⊆ ZPP follows trivially from their

respective definitions — but in fact our equivalence shows that such

derandomization is necessary as well. Furthermore, as a corollarywe

unconditionally resolve the CL vs CLP question in the randomized
setting.

1
For instance, Korten [20] prove that under uniform space-time trade-off lower bounds,

we can achieve a “scaled-up” version of LOSSY = P: languages that are 2𝑂 (𝑛) -time

reducible to LossyCode can be solved in deterministic 2
𝑂 (𝑛)

-time. Applying our

result, we obtain that CSPACE[𝑛] ⊆ DTIME[2𝑂 (𝑛)] from the same assumption.

2
Where on input 𝑥 , we either compute 𝐿 (𝑥) or return a special symbol ⊥, and we

return ⊥ with probability at most 1/3 for every input and starting tape.

555

The Structure of Catalytic Space: Capturing Randomness and Time via Compression STOC ’25, June 23–27, 2025, Prague, Czechia

Corollary 1.8.
CZPL = CZPLP.

By Corollary 1.4, derandomizing ZPP would also imply deran-

domization on both sides of Corollary 1.8, which gives another way

to view Corollary 1.4 as a “scaling down” of derandomization for

ZPP.

1.4 Technical Overview
Our results build on and substantially extend the compress–or–
random approach to studying CL [11, 12, 22, 24, 26]. At a high

level, prior results in this framework work as follows. Think of the

catalytic tape as a candidate source of random bits. If the tape is suf-

ficiently random, we can simply use it without modification for our

desired task; otherwise, the tape must be (information theoretically)

compressible. To use this dichotomy in the context of CL, we must

have a way of certifying if the tape is random enough, and if not,

must have a compression scheme that can be implemented in CL.
The requirement for this efficient compression scheme previously

limited the approach to studying BPL [11, 12, 26].

To explain the relevance of compress–or–random to the problem

of ensuring (deterministic) catalytic algorithms have fast runtime,
recall that [2] observed that over a random initial catalytic tape, a

CL machine will halt in poly(𝑛) steps with high probability. Thus,

every initial tape configuration that “causes” a high runtime is

unusual, and in particular is information-theoretically compressible.

This fact was known for a decade, but it was unclear how to make

it algorithmically useful, which is required for the compress–or–

random paradigm.

1.4.1 Compress–or–Compute: Compression from High Runtime. To
explore our first idea, we will consider Theorem 1.2; our goal is to

show, given a language 𝐿 decidable by both a catalytic logspace

machine and a polynomial time machine, how to use the compress–

or–random framework to decide 𝐿 in poly-time bounded CL. Our
first main insight in this paper — in essence the only tool needed for

this result — is a new way of compressing the tape when simulating

the CL machine𝑀 .

Our idea is as follows: if we run𝑀 in question on starting tapew,

it either quickly halts and returns the correct answer, or it runs for a

long time; for concreteness, say𝑀 runs for at least 2𝑛𝑐 steps, where

𝑀’s free work tape has length 𝑐 log𝑛. In the former case we are

done, as we have successfully and quickly computed the language

𝐿 in question. In the latter case, we think of our new machine as

having a larger starting tape of the form

(w ◦ 𝑖)
where 𝑖 ∈ [2𝑛𝑐] is a timestep specified with 𝑐 log𝑛 + 1 bits. After
running the machine𝑀 on starting tape w for 𝑖 steps, the catalytic

tape will be in configuration

(w′ ◦ 𝑖)
for some new configuration w′, and moreover𝑀’s work tape will

have configuration 𝑣 ∈ {0, 1}𝑐 log𝑛 for some 𝑣 . Next, we set the

catalytic tape to

(w′ ◦ 𝑣 ◦ 0) .
Our insight is that we can describe (w ◦ 𝑖) (i.e. the original configu-
ration of the tape) as “run𝑀 backwards from catalytic tape w′ and

work tape 𝑣 , and count the number of elapsed steps until we reach

a start state.”

This describes (w, 𝑖) with (w′, 𝑣) via a catalytic algorithm, and

|w ◦ 𝑖 | = |w′ ◦ 𝑣 | − 1
from our choice of timestep size. Thus, we effectively compress the

tape by one bit from the failure of the machine to halt quickly, and

both the compression and decompression can be implemented in-
placewith𝑂 (log𝑛) bits of auxiliaryworkspace3. A natural recursive

extension of this algorithm results in a catalytic machine that either

computes 𝐿 in polynomial time, or frees up a polynomial amount of

space on the catalytic tape; hence, we dub this strategy “compress–

or–compute”. This argument immediately yields Theorem 1.2: in

CLP, either our CL machine computes the language quickly, or we

free up enough space to run our P machine.

1.4.2 Compress–or–Compress–or–Random: Derandomization via
Two Different Compressors. The previous result compressed the

tape from the runtime (with starting tape w) being too large. To

generalize this notion, we let the configuration (sub)graph from
starting statew, denotedR(w), be the set of states (w′, 𝑣) reachable
from starting tape w, where w′ represents the catalytic tape and
𝑣 the workspace of the machine 𝑀 . For a deterministic catalytic

machine, this graph is (essentially) a line. For randomized machines,

each state now has out-degree 2, corresponding to the transitions

from reading random bit 0 and 1. However, it is still the case that

over a random w, the size of R(w) is bounded by poly(𝑛) with
high probability, since the machine must reset the catalytic tape no

matter the sequence of random bits.

Naïvely, one would hope to adopt the same argument, compress-

ing w ◦ 𝑖 by using 𝑖 to index into R(w) if it is sufficiently large.

However, it is not even clear how to explore this graph, and if R(w)
is small, it is not clear how to decide the language (as we cannot

simply examine the final state of a line).

We deal with both of these problems by using an additional ap-
plication of the compress–or–random framework. For now, assume

we have access to a collection of random walks 𝑌 ⊆ {0, 1}𝑛 of size a

large polynomial in 𝑛. We then consider the configuration subgraph

Y := Y(w, 𝑌) ⊆ R(w)
representing states reached from initial configuration w with ran-

dom coins specified by 𝑌 . Building on the deterministic case, we

are able to label the states in this subgraph in a consistent fashion

given 𝑌 . We again think of our catalytic tape as

(w ◦ 𝑖)
where 𝑖 ∈ [2𝑛𝑐], and divide into two cases based on the size of Y:

Large Graph Case. If |Y| ≥ 2𝑛𝑐 we follow essentially the same

compression strategy as Section 1.4.1: we interpret 𝑖 as an index

into Y, traverse to the state specified by that index, and replace 𝑖

with the work tape of𝑀 at this configuration, freeing up one bit of

space.

We remark that decompressing in this case is not immediate. We

are “at” a state

𝜎 = (w′, 𝑣)
3
Being able to efficiently reverse the computation in order to decompress requires

some additional subtlety; see Section 3 for details.

556

STOC ’25, June 23–27, 2025, Prague, Czechia James Cook, Jiatu Li, Ian Mertz, and Edward Pyne

and wish to find the index of 𝜎 in Y. Our compression scheme

cannot store which string 𝑦 ∈ 𝑌 we used to reach 𝜎 (otherwise it is

not compressing); therefore, the decompression algorithm cannot

naïvely “walk backwards” to recover the initial tape w and the

index 𝑖 without this information. One may think of running the

machine forwards from 𝜎 until it halts to recover the initial tape w.

However, this will destroy our intermediate configuration (w′, 𝑣),
leaving us unable to determine the index 𝑖 . Fortunately, we do have

access to the set 𝑌 in our decompression algorithm. We iterate

over 𝑦 ∈ 𝑌 to find a string that takes us from 𝜎 to the (unique)

backwards-reachable start state. Our algorithm, which uses ideas

from reversible computation, satisfies the following: if a walk 𝑦

does not take us to the start state, we reset the tape to 𝜎 and can

try again.

Once we have identified a good walk 𝑦 (which may be non-

unique), we can describe 𝜎 via the index of 𝑦 in 𝑌 using 𝑂 (log𝑛)
bits, which allows us to temporarily “store” the configuration on

the work tape. We can then use a further routine to determine the

index of 𝜎 in Y.

Small Graph Case. If |Y| ≤ 2𝑛𝑐 , we hope to decide 𝐿. Unfortu-

nately, there are now two different reasons why our collection of

explored states could be small: 1) the configuration graph R(w) is
actually small; or 2) our collection of random walks 𝑌 does a bad

job exploring it. In addition, we must specify where the set of walks

𝑌 actually comes from.

To deal with all of these issues, we create the strings 𝑌 using an

instantiation of the Nisan-Wigderson generator [25] developed by

Doron, Pyne, and Tell [11]. We denote the generator as

NW𝑓
: {0, 1}𝑂 (log𝑛) → {0, 1}𝑛

where 𝑓 ∈ {0, 1}poly(𝑛) is a truth table. For every 𝐷 : {0, 1}𝑛 →
{0, 1} that distinguishes the output of the PRG from uniform, i.e.���E [𝐷 (

NW𝑓 (U)
)]
− E[𝐷 (U)]

��� ≥ 1/10

there is a small circuit𝐶 such that𝐶 computes 𝑓 when given oracle

access to𝐷 . Following the approach of [11], we use a new section of

the catalytic tape, which we denotem, as the truth table 𝑓 . Unrolling

the definition, if NWm
fails to fool 𝐷 , the section of tape m is

compressible given access to 𝐷 .

What if NWm
does fool 𝐷? Ideally, we would have used the

following distinguisher:

𝐷∗ (𝑟) := I [𝑀 accepts on randomness 𝑟] . (1)

With this choice of 𝐷 , if NWm
fools 𝐷 , it immediately follows that

we can use NWm (U) as the random inputs for𝑀 and get the right

answer by majority vote. However, our compression argument runs

into trouble with this distinguisher because we cannot compute

the expected value of 𝐷∗ over the true uniform distribution U — to

wit, this is our entire goal. We will instead use two distinguishers,

both easy to test given access to 𝑌 , and show that fooling both is

sufficient to approximate 𝐷∗ (U).
Our first test is whether NWw

does a good job exploring the

graph R(w) by seeing how much is left out of Y:

𝐷e (𝑟) := I [𝑀 leaves Y when reading random bits 𝑟] , (2)

Note that we have 𝐷e (NWm (U)) = 0, so if E[𝐷e (U)] ≥ 1/10 we
have that 𝐷 distinguishes NWm

from uniform; in particular, this

occurs if NWm
does not do a good job exploring the graph.

The second distinguisher tests whether NWm
gives similar an-

swers to random walks, but unlike 𝐷∗ we only care about the

“tractable” case when 𝐷e is fooled:

𝐷acc (𝑟) :=I[𝑀 does not leave Y
and accepts when reading random bits] . (3)

If NWm
fools both 𝐷e and 𝐷acc, it can be used to simulate𝑀 .

In the case thatNWm
fails to fool one of the distingishers𝐷 = 𝐷e

or 𝐷 = 𝐷acc, we show how to implement the transformation — that

is, from 𝐷 to a small circuit for 𝑓 — within catalytic logspace. We

build off recent works studying related questions [11, 27], while

incorporating new ideas. There are two required steps in this trans-

formation. The first is transforming each distinguisher 𝐷 into a

previous bit predictor4 𝑃 for NWm
, i.e. a function satisfying

Pr

𝑥←NWm (U)
[𝑃 (𝑥> 𝑗) = 𝑥 𝑗] ≥

1

2

+ 1

𝑛2
.

By Yao’s Lemma [29], we have that there exists a predictor for

NWm
with the following form:

𝑃 (𝑟>) = 𝐷 (𝑧 ◦ 𝑟>) ⊕ 𝑏 (4)

where 𝑏 ∈ {0, 1} and 𝑧 ∈ {0, 1}∗, as long as the conventional hybrid
argument is done backwards. Next, we make the same observation

as [11]: restricting the first bits of𝐷e or𝐷acc to 𝑧 simply corresponds

to starting the random walk at a new location in Y.5 (This is the
reason we used two distinguishers 𝐷e, 𝐷acc: the observation does

not apply to the “ideal” distinguisher 𝐷∗ in Equation (1) as𝑀 may

leaveY on some randomness 𝑟 .) As there are only poly(𝑛) different
places to start this walk, we can create a candidate predictor for

each vertex, then determine if any such predictor achieves good

advantage on NWm
. We remark that in the language of [11, 22], we

obtain a distinguish-to-predict transformation for this distinguisher.

If such a good predictor exists, we must compress m in-place
with 𝑂 (log𝑛) auxiliary workspace. Luckily, such an algorithm was

constructed recently by [11].
6
Otherwise, we must have that NW

does a good job exploring the configuration graph.

Technical Issue: Compression Destroys the Graph. There is one
more complication that we discuss here. Once we compress the

generator, the above approach would lose the ability to evaluate the

predictor (and hence we would not be able to decompress). This is

because the predictor is defined in terms of the explored subgraph

Y, which itself depends on the outputs of the generator. To resolve

this circularity, we use a sequence of generators 𝐺1, . . . ,𝐺2𝑛𝑐 , each

instantiated with its own section of catalytic tape. Let Y𝑖 be the

4
In the general case, i.e., the distinguisher𝐷 is a general circuit, this problem is known

to be as hard as derandomization itself [22].

5
More formally, for both 𝐷e and 𝐷acc , we also need to introduce a new node 𝜕Y in

the configuration graph to denote the case where𝑀 leaves Y (see the full version for

details); this suffices as both distinguishers reject immediately when leaving Y.
6
For this step, we can replace the Nisan-Widgerson generator of [11] with a com-

pression algorithm utilizing previous bit predictors implicit in Korten’s proof of the

prBPP-hardness of R-Lossy Code [20] (see the full version for details). This is because

once we have obtained a predictor, we only need to compress a truth table of size 𝑛𝑐

to 𝑛𝑐 − 𝑛 bits. (Note that the generator in [11] allows us to compress a truth table of

size 𝑛𝑐 to 𝑛 bits, which is indeed an overkill.)

557

The Structure of Catalytic Space: Capturing Randomness and Time via Compression STOC ’25, June 23–27, 2025, Prague, Czechia

states explored by 𝐺𝑖 . For every fixed starting tape w, each addi-

tional generator either explores a new configuration (bringing us

closer to the large graph case) or fails to do so, in which case

Y𝑖 ⊆
⋃
𝑗≠𝑖

Y𝑗 .

If this holds, and we use Y :=
⋃

𝑗≠𝑖 Y𝑗 when defining the distin-

guishers 𝐷e, 𝐷acc, then we can describe the corresponding predic-

tors in Equation (4) using outputs of all PRGs except 𝐺𝑖 , which will

be the only one we attempt to compress, and hence we never lose

access to Y.
We remark that [11] did not have to deal with this complication

for their proof of BPL ⊆ CL, as there the graph was always present

on the read-only input tape, whereas here we have only implicit

access.

Putting the Cases Together. We now present one step (with mild

simplifications) of our final algorithm. Let 𝑀 be the randomized

catalytic machine deciding 𝐿. We interpret the catalytic tape as

w ◦ 𝑖 ◦m1 ◦ . . . ◦m2𝑛𝑐

and for 𝑗 ∈ [2𝑛𝑐] instantiate the PRGs
𝐺 𝑗 = NWm𝑗

: {0, 1}𝑂 (log𝑛) → {0, 1}2𝑛
𝑐

.

Let 𝑌 be the set of strings output by the union of these PRGs. Then

there are three cases:

(1) If 𝑌 explores more than 2𝑛𝑐 states in the configuration graph

of𝑀 , we are in the large graph case. We compress (w ◦ 𝑖) to
(w′ ◦ 𝑣) (freeing up one bit on the tape) and proceed to the

next iteration, without modifying the walks 𝑌 .

(2) If 𝑌 explores fewer than 2𝑛𝑐 states, there is some 𝑗 such that

𝐺 𝑗 exclusively reaches states already reached by the other

generators. Then let Y =
⋃

𝑗≠𝑖 Y𝑖 be that set of states, and
consider the distinguishers 𝐷e (see Equation (2)) and 𝐷acc
(see Equation (3)) based onY. From these distinguishers, we

build candidate predictors

𝑃1, . . . , 𝑃poly(𝑛) ,

each of which can be concisely described using𝐺1, . . . ,𝐺 𝑗−1.
(a) If there is some 𝑘 such that 𝑃𝑘 predicts 𝐺 𝑗 with good

advantage, we compressm𝑗 by poly(𝑛) bits and can decide
the language via a space-inefficient algorithm.

(b) If no such predictor achieves good advantage, it must be

the case that Y does a good job of covering R(w) (other-
wise 𝐷e is a good distinguisher) and𝐺 𝑗 does a good job of

simulating𝑀 within Y (otherwise 𝐷acc is a good distin-

guisher), so we can use the output of 𝐺 𝑗 to derandomize

𝑀 .

Thus in Item 1 and Item 2a we compress the tape by 1 and poly(𝑛)
bits respectively, and in Item 2b we use our PRG to derandomize

the algorithm in the conventional way. Due to this structure, we

call this approach compress–or–compress–or–random.

1.5 Future Questions
The most immediate question left open by our work is to show

CL ⊆ P. We call attention to one angle suggested by our work: if

Theorem 1.2 can be adapted to the zero-error randomized case, i.e.

CZPL∩P = CZPLP, then the question is resolved by Theorem 1.7.

As for other catalytic models for which our techniques may find

future traction, canwe show that nondeterministic catalytic logspace
(CNL) equals catalytic logspace? The requirement to restore the

tape no matter the sequence of guesses can be used to showCNL ⊆
ZPP, and Buhrman, Koucký, Loff, and Speelman [3] showed that

CNL is closed under complement under strong circuit lower bounds.

While our timestamp compression approach could still apply here —

a polynomial amount of free space on the tape is sufficient to solve

CNL directly — there are two barriers to approaching unconditional

structural results: first, as in the randomized case the configuration

graph has out-degree 2, which complicates the case of walking

backward; and second, a good guess sequence may be exponentially

unlikely, which makes us unable to apply the machinery of directed

random walks to obtain win-win arguments.

1.6 Roadmap
In Section 2 we formally define catalytic classes and their configu-

ration graphs. In Section 3 we prove Theorem 1.2 and Theorem 1.6.

We defer the proof of Theorem 1.1 to the full version.

2 Preliminaries
2.1 Notation
Let [𝑛] = {1, 2, . . . , 𝑛}. We useU𝑛 to denote the uniform distribution

over {0, 1}𝑛 , and may omit the subscript 𝑛 if it is clear in the context.

For a string 𝑦 and 𝑖 ∈ N, we use 𝑦𝑖 to denote the 𝑖-th bit of 𝑦, 𝑦≤𝑖
to denote the prefix of 𝑦 of length 𝑖 , and 𝑦>𝑖 to denote the suffix of

𝑦 of length |𝑦 | − 𝑖 . For two strings 𝑥 and 𝑦, we use 𝑥 ◦ 𝑦 to denote

the concatenation of 𝑥 and 𝑦.

Let I[𝜙] be the indicator function, i.e., I[𝜙] = 1 if 𝜙 is true,

and I[𝜙] = 0 otherwise. For a language 𝐿 ⊆ {0, 1}∗, we define

𝐿(𝑥) := I[𝑥 ∈ 𝐿].
For a graph 𝐺 = (𝑉 , 𝐸), we use Vertices(𝐺) := 𝑉 to denote the

set of vertices of 𝐺 .

2.2 Complexity Classes for Catalytic
Computation

Our basic starting point is the notion of a catalytic machine, as

defined by [2]:

Definition 2.1. A catalytic machine 𝑀 is defined as a Turing ma-

chine in the usual sense — i.e. a read-only input tape, a write-only

output tape, and a (space-bounded) read-write work tape — with

an additional read-write tape known as the catalytic tape. Unlike
the ordinary work tape, the catalytic tape is initialized to hold an

arbitrary string w, and𝑀 has the restriction that for any initial set-

ting of the catalytic tape, at the end of its computation the catalytic

tape must be returned to the original state w.

For technical reason, we introduce a weaker definition of cat-

alytic subroutines, which shares the same syntactic setup of cat-

alytic machines but does not necessarily reset its catalytic tape to

the initial configuration after the computation. More formally:

Definition 2.2. A catalytic subroutine is defined as a standard Tur-
ing machine — i.e. a read-only input tape, a write-only output tape,

and a (space-bounded) read-write work tape — with an additional

read-write tape known as the catalytic tape.

558

STOC ’25, June 23–27, 2025, Prague, Czechia James Cook, Jiatu Li, Ian Mertz, and Edward Pyne

That is, a catalytic machine𝑀 is a catalytic subroutine that for

any input 𝑥 and any initial configuration w of the catalytic tape

of 𝑀 , 𝑀w (𝑥) terminates and resets the catalytic tape back to its

initial configuration w.

Recall the standard definitions of a randomized machine𝑀 com-

puting a function 𝑓 : on input 𝑥 ,𝑀 outputs

• zero-sided error: 𝑓 (𝑥) with probability at least 2/3 and ⊥
otherwise,

• one-sided error: if 𝑓 (𝑥) = 1, 𝑓 (𝑥) with probability 1; if 𝑓 (𝑥) =
0, 𝑓 (𝑥) with probability at least 2/3 and 𝑓 (𝑥) otherwise,
• two-sided error: 𝑓 (𝑥) with probability at least 2/3 and 𝑓 (𝑥)
otherwise,

where the probability is only with respect to the randomness of𝑀

and is independent of 𝑥 . Note that the error probability 1/3 can be

set to be an arbitrary constant in (0, 1/2), as one can apply standard

the error reduction techniques.

Definition 2.3 ([10]). A randomized catalytic machine𝑀 is defined

as a catalytic Turing machine with access to a uniformly random

string 𝑟 . As in the standard model of randomized space-bounded

computation,𝑀 may only access 𝑟 in a one-way fashion, and must

halt in finite time with certainty.

We define zero-sided, one-sided, and two-sided error as above; in

particular, a randomized catalytic machine computes a function 𝑓 ,

in any of these senses, if the probability of success depends only on

the randomness of 𝑟 (in particular, it holds for every value of 𝑥 and

w). Furthermore, we require that w is reset on every computation

path, i.e. no matter the contents of the random tape and what 𝑀

outputs.

This gives rise to a natural structural theory of catalytic space

paralleling that of ordinary complexity theory.

Definition 2.4. We define catalytic variants of standard space-

bounded classes as follows:

• CSPACE [𝑠] is the class of languages decidable by catalytic

Turing machines using workspace 𝑂 (𝑠) and catalytic space

2
𝑂 (𝑠)

.

• CZPSPACE [𝑠] and CBPSPACE [𝑠]7 are the classes of lan-
guages decidable by randomized catalytic Turing machines

using workspace 𝑂 (𝑠), catalytic space 2𝑂 (𝑠) , and access to

random bits, with zero-sided and two-sided error, respec-

tively.

• CTISP [𝑡, 𝑠] is the class of languages decidable by catalytic

Turing machines using time 𝑂 (𝑡), workspace 𝑂 (𝑠), and cat-

alytic space 2
𝑂 (𝑠)

.

• CZPTISP [𝑡, 𝑠] and CBPTISP [𝑡, 𝑠] are the classes of lan-

guages decidable by randomized catalytic Turing machines

using time 𝑂 (𝑡), workspace 𝑂 (𝑠), catalytic space 2𝑂 (𝑠) , and
access to random bits, with zero-sided, one-sided, and two-

sided error, respectively.

Furthermore, we define the following specifications of the above

classes to the logspace setting, which is the instantiation of the

most interest to the present work:

7
While all published works on the subject of randomized catalytic space [10, 11, 24, 26]

put C before e.g. BP in CBPSPACE [𝑠], they first appear in an older, yet unpublished,

work by Dulek, which reverses the order. Theorem 1.1, thankfully, all but obviates the

need to solve this nomenclature issue.

• CL := CSPACE [log𝑛]
• CBPL := CBPSPACE [log𝑛]
• CLP := CTISP [poly(𝑛), log𝑛] (also called CSC1

[10])

• CZPLP := CZPTISP [poly(𝑛), log𝑛]

Note that while some works consider the more general case of

CSPACE [𝑠, 𝑐], where the catalytic tape may take some variable

length 𝑐 different from 2
𝑠
(see, e.g., [1, 26]), Definition 2.4 is the

most standard setting and the one of interest to the current work.

While our main results are stated in terms of catalytic logspace,

we will prove them in generality for different values of 𝑠 and 𝑡 .

One subtlety here is that such values themselves need to be easily

computable:

Definition 2.5. We say that a function ℓ := ℓ (𝑛) is constructible in
space 𝑠 := 𝑠 (𝑛) if there exists a machine𝑀ℓ using space 𝑠 (𝑛) which
takes in 1

𝑛
and outputs the value ℓ (𝑛).

We say ℓ is space constructible if ℓ is constructible in space 𝑂 (ℓ);
it is said to be logspace constructible if ℓ is constructible in space

𝑂 (log ℓ).

2.3 Configuration Graphs of Catalytic Machines
We define the configuration graph of a catalytic machine, and how

one can traverse it using catalytic subroutines. Throughout this

subsection, we assume that 𝑠 := 𝑠 (𝑛) ≥ log𝑛 is a space constructible

function.

2.3.1 Deterministic Configuration Graphs. We start with defining

and manipulating configuration graphs of deterministic catalytic

machines, which we will use in Section 3.

Definition 2.6 (Configuration graphs of deterministic catalytic

machines). Let𝑀 be a deterministic catalytic machine that uses 𝑠

bits of workspace and 2
𝑠
bits of catalytic space on inputs of length

𝑛, and let 𝑥 ∈ {0, 1}𝑛 be an input. The configuration graph G𝑥 is a

directed graph defined as follows:

• Each node is a configuration (w, 𝑣) of𝑀 , wherew ∈ {0, 1}2𝑠

is the catalytic tape configuration and 𝑣 ∈ {0, 1}𝑠 is the bits
of auxiliary state.

8

• We say a vertex 𝜎 is a starting state if 𝜎 = (w, 0𝑠) for some

w (and without loss of generality assume that the machine

starts in such a configuration). We let this state be denoted

start(w).
• We say a vertex 𝜎 is a halting state if 𝜎 = (w, 𝑏 · 1𝑠−1)
for some w and 𝑏 ∈ {0, 1} (and without loss of generality

assume that the machine always returns 𝑏 upon reaching

such a configuration). We let this state be denoted halt(w, 𝑏),
and let acc(w) = halt(w, 1).
• Each non-halting configuration (w, 𝑣) has a single out-edge
to (w′, 𝑣 ′), which is the configuration of 𝑀 after one step

execution from the configuration (w, 𝑣) on input𝑥 .We define

Γ(w, 𝑣) := (w′, 𝑣 ′).
We may drop the subscript 𝑥 and denote G𝑥 by G when the input

𝑥 is clear in the context.

We will need a way for a catalytic machine 𝑀′ to simulate an-

other catalytic machine𝑀 in a way that is reversible: after running

8
The state description 𝑣 should be of length𝑂 (𝑠) to keep track of the FSA configuration

and tape head locations of𝑀 , but we ignore this technicality for the sake of simplicity.

559

The Structure of Catalytic Space: Capturing Randomness and Time via Compression STOC ’25, June 23–27, 2025, Prague, Czechia

the simulation forward for some number of steps,𝑀′ must be able

to just as quickly run the simulation backward the same number of

steps, restoring the catalytic tape to where it started. The simulation

need not follow the same sequence of steps as𝑀 itself, but running

it to the end must produce the same output as 𝑀 . The following

theorem makes this precise.

Theorem 2.7. For every catalytic machine𝑀 deciding a language
𝐿 using workspace 𝑠 := 𝑠 (𝑛) ≥ log𝑛 with configuration graph G,
there exist catalytic subroutines DetWalk,DetRev that run in worst-
case time poly(2𝑠 , 𝑘) and work as follows. There exists a bijection

Π : G𝑥 × {0, 1} → G𝑥 × {0, 1}

so that for every w, the sequence

(start(w), 0),Π[start(w), 0],Π2 [start(w), 0], . . .

includes (halt(w, 𝑏), 0) = ((w, 𝑏1𝑠−1), 0), where 𝑏 = 𝐿(𝑥), and does
not include (start(w′), 0) for anyw′ ≠ w or (halt(w′, 𝑏′), 0) for any
w′ ≠ w or 𝑏′ ≠ 𝐿(𝑥).

For every 𝑘 ∈ N and w, either:

(1) DetWalkw (𝑥, 𝑘) returns 𝐿(𝑥) (and does not modify the cat-
alytic tape).

(2) DetWalkw (𝑥, 𝑘) sets the catalytic tape to w′ and returns the
tuple (𝑣 ′, 𝑎′), where

((w′, 𝑣 ′), 𝑎′) = Π𝑘 [start(w), 0] .

Moreover, DetRevw
′ (𝑥, 𝑣 ′, 𝑎′) sets the catalytic tape to w and

returns 𝑘 .

As this result involves technical manipulations of the configu-

ration graph of catalytic machines, we defer the proof to the full

version; it is adapted from a previous proof due to Dulek [12] (see

also Datta, Gupta, Jain, Sharma, and Tewari [10]). The essential ap-

proach is to take an Eulerian tour through the configuration graph,

verifying that all operations can be done in-place on the catalytic

tape, and in polynomial time. As the theorem crucially uses that

the configuration graph has out-degree 1, we must take a separate

approach for the randomized case, which we discuss later.

2.3.2 Randomized Configuration Graphs. Similar to the determin-

istic case, we can define the configuration graph of a randomized

catalytic machine and related notions. Some of the concepts and

results have been implicit in literature of catalytic computation;

nevertheless, we provide a self-contained description for complete-

ness.

Definition 2.8 (Configuration graphs of randomized catalytic ma-

chines). Let𝑀 be a randomized catalytic machine that uses 𝑠 bits

of workspace and 2
𝑠
bits of catalytic space on inputs of length 𝑛,

and let 𝑥 ∈ {0, 1}𝑛 be an input. The configuration graph G𝑥 is a

directed graph defined as follows:

• Each node is a configuration (w, 𝑣) of𝑀 , wherew ∈ {0, 1}2𝑠

is the catalytic tape configuration and 𝑣 ∈ {0, 1}𝑠 is the bits
of auxiliary state.

9

9
As in the deterministic case, the state description 𝑣 should be of length 𝑂 (𝑠) to
keep track of the FSA configuration and tape head locations of𝑀 , but we ignore this

technicality for the sake of simplicity.

• We say a vertex 𝜎 is a starting state if 𝜎 = (w, 0𝑠) for some

w (and WLOG assume that the machine starts in such a

configuration). We let this state be denoted start(w).
• We say a vertex 𝜎 is a halting state if 𝜎 = (w, 𝑏 · 1𝑠−1) for
some w and 𝑏 ∈ {0, 1} (and WLOG assume that the machine

always returns 𝑏 upon reaching such a configuration). We let

this state be denoted halt(w, 𝑏), and let acc(w) = halt(w, 1).
• Each non-halting configuration (w, 𝑣) has two out-edges to

(w0, 𝑣0) and (w1, 𝑣1), where (w𝑏 , 𝑣𝑏) is the configuration of

𝑀 after one step execution from the configuration (w, 𝑣) on
input 𝑥 if the random bit probed by the machine in this step

is 𝑏 ∈ {0, 1}. We define Γ𝑏 (w, 𝑣) := (w𝑏 , 𝑣𝑏).
We may drop the subscript 𝑥 and denote G𝑥 by G when the input

𝑥 is clear in the context.

The key difference between Definition 2.6 and Definition 2.8 is

the outdegree of non-halting configurations, which increases due

to conditioning on different random strings. This will greatly affect

how we reconfigure the machine to travel forwards and backwards

à la Theorem 2.7; furthermore, while a walk may end with an

output being produced, this output is no longer guaranteed to be

the correct value of 𝐿(𝑥), as the specific randomness 𝑟 may cause

our machine to err.

Definition 2.9. For a configuration graph G𝑥 of a randomized

catalytic machine, a configuration 𝜎 ∈ G𝑥 , and a string 𝑟 ∈ {0, 1}ℓ ,
we define G𝑥 [𝜎, 𝑟] as the configuration 𝜎ℓ reached by taking a walk
of length ℓ according to 𝑟 , i.e.,

𝜎0 := 𝜎, 𝜎1 := Γ𝑟1 (𝜎0), . . . , 𝜎ℓ := Γ𝑟ℓ (𝜎ℓ−1) . (5)

If the initial configuration 𝜎 is clear in the context, we may slightly

abuse the notation to identify 𝑟 and the walk specified by 𝑟 in (5).

These walks will take the place of Π in the statement of Theo-

rem 2.7, and will allow us to quantify the behavior of our forward

and backward machines. (In contrast to Theorem 2.7, these walks

exactly match computations of the original catalytic machine. For

Theorem 2.7, it was necessary to invent an invertible transition func-

tion Π in order to allow running backward in a time-efficient way;

here we avoid that complication but give no runtime guarantee.)

Theorem 2.10. For every randomized catalytic machine𝑀 com-
puting a language 𝐿 using workspace 𝑠 := 𝑠 (𝑛) ≥ log𝑛 with configu-
ration graph G, there exist catalytic subroutines RandWalk,RandRev
that use 𝑂 (𝑠 + log |𝑟 |) additional workspace and work as follows.
• RandWalkw (𝑥, 𝑣, 𝑟) sets the catalytic tape to w′ and returns
𝑣 ′, where G𝑥 [(w, 𝑣), 𝑟] = (w′, 𝑣 ′). In addition, the subroutine
RandWalkw (𝑥, 𝑣, 𝑟) only requires one-way access to 𝑟 .
• If there is a catalytic tape configuration w such that we have
G[start(w), 𝑟] = (w′, 𝑣 ′), RandRevw′ (𝑥, 𝑣 ′, 𝑟) accepts and
leaves the catalytic tape in configurationw; otherwise, it rejects
and leaves the catalytic tape in configuration w′.

As Theorem 2.10 involves technical manipulations of configura-

tion graphs, we defer the proof to the full version.

Lastly, we will need one other tool for randomized configuration

graphs, namely to compare the results of two different walks, each

starting from the same start(w) but generated by different random

strings 𝑟, 𝑟 ′ ∈ {0, 1}∗.

560

STOC ’25, June 23–27, 2025, Prague, Czechia James Cook, Jiatu Li, Ian Mertz, and Edward Pyne

Lemma 2.11. There is a catalytic subroutine EQ (𝑥, 𝑟, 𝑟 ′) using
𝑂 (log(𝑛) + log(|𝑟 |) + log(|𝑟 ′ |)) additional workspace such that the
routine EQw (𝑥, 𝑟, 𝑟 ′) accepts if and only if

G𝑥 [start(w), 𝑟] = G𝑥 [start(w), 𝑟 ′] .

Proof. Let

(w𝑟 , 𝑣𝑟) := G[start(w), 𝑟] and (w𝑟 ′ , 𝑣𝑟 ′) := G[start(w), 𝑟 ′];
the goal of 𝑇w (𝑟, 𝑟 ′) is to determine whether or not (w𝑟 , 𝑣𝑟) =
(w𝑟 ′ , 𝑣𝑟 ′). The algorithm compares (w𝑟 , 𝑣𝑟) and (w𝑟 ′ , 𝑣𝑟 ′) bit by
bit. Let ℓ := | (w𝑟 , 𝑣𝑟) | (= | (w𝑟 ′ , 𝑣𝑟 ′) |). For each 𝑖 ∈ [ℓ], it works as
follows:

(1) Let 𝑣𝑟 := RandWalkw (𝑥, 0𝑠 , 𝑟). The catalytic tape will be

w𝑟 , where (w𝑟 , 𝑣𝑟) := G[start(w), 𝑟]. Let 𝑏 be the 𝑖-th bit

of (w𝑟 , 𝑣𝑟). We then call RandRevw𝑟 (𝑥, 𝑣𝑟 , 𝑟) to reset the

catalytic tape to w.

(2) Let 𝑣𝑟 ′ := RandWalkw (𝑥, 0𝑠 , 𝑟 ′). The catalytic tape will be
w𝑟 ′ , where (w𝑟 ′ , 𝑣𝑟 ′) := G[start(w), 𝑟 ′]. Let 𝑏′ be the 𝑖-th
bit of (w𝑟 ′ , 𝑣𝑟 ′). We then call RandRevw𝑟 ′ (𝑥, 𝑣𝑟 ′ , 𝑟) to reset
the catalytic tape to w.

(3) The algorithm rejects if 𝑏 ≠ 𝑏′.

The algorithm accepts if it passes the test for any 𝑖 ∈ [ℓ] (see the
full version for the pseudocode).

The correctness and the space complexity of the algorithm follow

directly from the correctness and the space complexity ofRandWalk
and RandRev (see Theorem 2.10). □

3 Structural Results for CL
In this section, we introduce a reduction from CL to LossyCode,
and derive new structural results:CLP = CL∩P andCL ⊆ CZPLP.
Finally, we show that the reduction implies a “certified derandom-

ization” for CL.

3.1 CL Reduces to Lossy Code
Our main compression algorithm for CSPACE [𝑠] is as follows:

Theorem 3.1. Let 𝑠 := 𝑠 (𝑛) ≥ log𝑛 be space constructible. For ev-
ery 𝐿 ∈ CSPACE [𝑠], there are catalytic subroutines DetComp and
DetDecomp with worst-case poly(2𝑠 , 𝐵) running time using addi-
tional workspace𝑂 (𝑠 + log𝐵) that work as follows. Letw be a length-
(2𝑠 +𝑂 (𝑠) + 𝐵) configuration of the catalytic tape and 𝑥 ∈ {0, 1}𝑛 be
an input. Then the subroutines work as follows:
• DetCompw (1𝐵, 𝑥) either returns 𝐿(𝑥) and resets the catalytic
tape, or returns ⊥ and sets the catalytic tape to be of form
w′ ◦ 0𝐵 , where |w′ | = 2

𝑠 +𝑂 (𝑠).
• DetDecompw

′◦0𝐵 (1𝐵, 𝑥) sets the catalytic tape to w.

Proof. Let 𝑀 be a catalytic machine using 𝑠 workspace that

decides 𝐿 and let G𝑥 be the configuration graph of𝑀 on input 𝑥 .

The Compression Algorithm DetComp. We implement DetComp
as the following iterative algorithm. It maintains a counter 𝑘 ∈
{0, . . . , 𝐵} and maintains the invariant that at the end of the 𝑘-th

iteration, either DetComp returns 𝐿(𝑥) and resets the catalytic

tape, or it sets the catalytic tape to be of the form w′
𝑘
◦ 0𝑘 such that

DetDecompw
′
𝑘
◦0𝑘 (1𝑘 , 𝑥) (which will be defined later) will set the

catalytic back to w.

Let 𝑘 := 0 and w′
0
:= w at the beginning, and thus the invariant

holds trivially. Assume that we are at the beginning of the (𝑘 + 1)-
th iteration for some 𝑘 ∈ [𝐵]. We know by the invariant that the

catalytic tape is of the form w′
𝑘
◦ 0𝑘 . We parse w′

𝑘
as

w′
𝑘
= m ◦ 𝑖 ◦ 𝑧

where m is of length 2
𝑠
, 𝑖 is of length 𝑠 + 2 (which we interpret

as a number in [2𝑠+2]), and 𝑧 is the remaining string of length at

least 𝐵−𝑘 . Next, we call the machine DetWalk of Theorem 2.7 with

input parameters DetWalkm (𝑥, 𝑖). Then one of two events occurs:

(1) First, suppose DetWalk returns 𝐿(𝑥) and resets the catalytic

tape to m. If 𝑘 ≥ 1, we call DetDecompw
′
𝑘
◦0𝑘 (1𝑘 , 𝑥) so that

by the invariant we will reset the catalytic tape back to w.

(2) Otherwise, the machine halts with the section of catalytic

tape in configuration m′ and returns (𝑣 ′, 𝑎′) ∈ {0, 1}𝑠+1. In
this case, we set the full catalytic tape to

w′
𝑘+1 ◦ 0

𝑘+1 (w′
𝑘+1 := m′ ◦ (𝑣 ′ ◦ 𝑎′) ◦ 𝑧)

where m′ is of length 2
𝑠
, (𝑣 ′ ◦ 𝑎′) is of length 𝑠 + 1, and 𝑧 is

as before. We increment 𝑘 and go to the start of the loop.

If the loop counter reaches 𝐵, we halt and return ⊥. See the full
version for the pseudocode of DetComp.

It is clear that all our loop invariants hold in each iteration; note

that in each new iteration of the loop, 𝑖 requires 𝑠 + 2 bits, which
will be taken from (𝑣 ′ ◦ 𝑎′) from the previous iteration plus one bit

from 𝑧 from the previous iteration. It is also clear that the runtime

is bounded by poly(2𝑠) in both cases.

The Decompression Algorithm DetDecomp. As mentioned above,

the catalytic machine DetDecomp will satisfy the following prop-

erty. Assume that DetCompw (1𝐵, 𝑥) does not halt in the 𝑘-th itera-

tion, for its catalytic tape w′
𝑘
◦ 0𝑘 at the end of the 𝑘-th iteration,

DetDecompw
′
𝑘 (1𝑘 , 𝑥) sets the catalytic tape to w. For simplicity

of presentation and analysis, we define DetDecompw
′
𝑘
◦0𝑘 (1𝑘 , 𝑥)

as a recursive algorithm, while it can be easily converted to an

equivalent iterative algorithm.

Fix any 𝑘 . The catalytic machineDetDecompw
′
𝑘
◦0𝑘 (1𝑘 , 𝑥) works

as follows. We interpret w′
𝑘
as

w′
𝑘
= m′ ◦ (𝑣 ′ ◦ 𝑎′) ◦ 𝑧

where m′ is of length 2
𝑠
and (𝑣 ′, 𝑎′) is of length 𝑠 + 1. We then run

the machine DetRev of Theorem 2.7 as DetRevm
′ (𝑥, 𝑣 ′, 𝑎′). Let m

and 𝑖 be such that DetWalkm (𝑥, 𝑖) sets the catalytic tape to m′ and
returns (𝑣 ′, 𝑎′). By Theorem 2.7, DetRevm

′ (𝑥, 𝑣 ′, 𝑎′) will thus set
the catalytic tape tom and return 𝑖 . We then set the overall catalytic

tape to

m ◦ 𝑖 ◦ 𝑧 ◦ 0𝑘−1 .
By the definition of our algorithms DetComp and DetDecomp,

we can see that the computation of DetDecompw
′
𝑘
◦0𝑘 (1𝑘 , 𝑥) as we

described above is exactly the reverse simulation of the 𝑖-th iteration

of DetCompw (1𝐵, 𝑥). Therefore,m◦ 𝑖 ◦𝑧 ◦0𝑘−1 is the catalytic tape
w′
𝑘−1 ◦ 0

𝑘−1
after the first 𝑘 − 1 iterations of DetCompw (1𝐵, 𝑥).

The algorithm DetDecomp then recursively calls

DetDecompw
′
𝑘−1◦0

𝑘−1
(1𝑘−1, 𝑥)

561

The Structure of Catalytic Space: Capturing Randomness and Time via Compression STOC ’25, June 23–27, 2025, Prague, Czechia

and by the invariant the catalytic tape is reset to w. See the full

version for the pseudocode of DetDecomp.

Analysis. Note that the correctness of the algorithm follows

directly from the invariant in the iterative algorithm DetComp.
Each ofDetComp andDetDecomp has 𝐵 iterations (which requires

an 𝑂 (log𝐵)-bits counter), in each of which it simulates or back-

ward simulates 𝑀 using 2
𝑂 (𝑠)

time and 𝑂 (𝑠) space. Therefore,
bothDetComp andDetDecomp run in poly(2𝑠 , 𝐵) time and require

𝑂 (𝑠 + log𝐵) workspace. □

An immediate corollary of Theorem 3.1 is that CL is contained

in LOSSY. Recall that LOSSY is the class of languages reducible

to the total search problem LossyCode [20].

Definition 1.5. The complexity class LOSSY is defined as the

languages that are polynomial-time reducible to the following total

search problem called LossyCode: Given a pair of Boolean circuits

𝐶 : {0, 1}𝑛 → {0, 1}𝑛−1 and 𝐷 : {0, 1}𝑛−1 → {0, 1}𝑛 , find some

𝑥 ∈ {0, 1}𝑛 such that 𝐷 (𝐶 (𝑥)) ≠ 𝑥 .

Theorem 1.6.

CL ⊆ LOSSY(⊆ ZPP) .

Proof. Let 𝐿 ∈ CL and 𝑀 be a catalytic machine using 𝑠 :=

𝑠 (𝑛) = 𝑂 (log𝑛) bits of workspace that decides 𝐿. By Theorem 3.1

with 𝐵 = 1, we can obtain the catalytic subroutines DetComp and

DetDecomp that runs in worst-case poly(2𝑂 (log𝑛)) = poly(𝑛) time.

This implies that there are polynomial-time algorithms DetComp′

and DetDecomp′ such that:

• DetComp′ (𝑥,w) takes 𝑥 ∈ {0, 1}𝑛 and a catalytic tape con-

figuration of length 2
𝑠
and simulates the catalytic subroutine

DetCompw (1, 𝑥). It outputs 02𝑠−1 if DetCompw (1, 𝑥) does
not output ⊥, and otherwise it outputs the first 𝑠 − 1 bits of
the catalytic tape after the simulation.

• DetDecomp′ (𝑥,w′) takes 𝑥 ∈ {0, 1}𝑛 and a string w′ of
length 2

𝑠 − 1. It simulates DetDecompw
′◦0 (1, 𝑥) and outputs

the catalytic tape of 𝐷 after the simulation.

Our reduction from 𝐿 to LossyCode works as follows: Given

any input 𝑥 ∈ {0, 1}𝑛 , it constructs (by standard transformation of

algorithms to circuits) a pair of circuits computingDetComp′ (𝑥, ·) :
{0, 1}𝑆 → {0, 1}𝑆−1 and DetDecomp′ (𝑥, ·) : {0, 1}𝑆−1 → {0, 1}𝑆 .

Let w∗ be a solution to the LossyCode instance

(DetComp′ (𝑥, ·),DetDecomp′ (𝑥, ·)),
i.e.,

DetDecomp′ (𝑥,DetComp′ (𝑥,w∗)) ≠ w∗ .
By the correctness of DetComp and DetDecomp (see Theorem 3.1),

we know thatDetCompw
∗ (1, 𝑥) outputs 𝐿(𝑥). We can then simulate

DetCompw
∗ (1, 𝑥) in polynomial-time and outputs the answer. □

3.2 Structural Results for CL and CLP
We now use our compression algorithm in Theorem 3.1 to prove

Theorem 1.2, our main structural result for time-bounded catalytic

computing.

Theorem 3.2. For all space constructible function 𝑠 := 𝑠 (𝑛) ≥
log𝑛 and logspace constructible function 𝑡 := 𝑡 (𝑛) ≥ 𝑛,

CTISP
[
2
𝑂 (𝑠) · 𝑡𝑂 (1) , 𝑠 + log 𝑡

]
= CSPACE [𝑠 + log 𝑡]

∩DTIME
[
2
𝑂 (𝑠) · 𝑡𝑂 (1)

]
.

In particular, CLP = CL ∩ P.

Proof. Fix any 𝑠 := 𝑠 (𝑛) ≥ log𝑛 and 𝑡 (𝑛) ≥ 𝑛. The forward

containment is immediate from the definitions, so it suffices to

prove the other direction.

Let 𝐿 ∈ CSPACE [𝑠 + log 𝑡] ∩ DTIME
[
2
𝑂 (𝑠) · 𝑡𝑂 (1)

]
, 𝑀 be a

CSPACE [𝑠 + log 𝑡] machine that decides 𝐿, and 𝑀′ be a (possi-

bly space inefficient) machine with running time 𝑂 (𝑡𝑘 · 2𝑘 ·𝑠) that
decides 𝐿 for some constant 𝑘 ≥ 1. We describe a catalytic ma-

chine for 𝐿 as follows. We first simulate the machine DetComp
of Theorem 3.1 for𝑀 with input (𝑥, 12(𝑘+1)𝑠 ·𝑡𝑘+1).
• If DetComp returns a value rather than ⊥, we return that

value and halt, where by Theorem 3.1 the catalytic tape has

been successfully reset and the machine returns 𝐿(𝑥).
• Otherwise, we run the machine𝑀′ on the last 2

(𝑘+1)𝑠 · 𝑡𝑘+1
bits on the catalytic tape (which are all zero after running

𝐶). It decides whether 𝑥 ∈ 𝐿; we store the result on the work

tape, set the last 2
(𝑘+1)𝑠 · 𝑡𝑘+1 bits on the catalytic tape back

to all zero, and call the decompression algorithmDetDecomp
with input (𝑥, 12(𝑘+1)𝑠 ·𝑡𝑘+1). By the correctness of DetComp
and DetDecomp, the catalytic tape will be reset, and we can

decide whether 𝑥 ∈ 𝐿.
Recall that both DetComp and DetDecomp run in time

poly(2𝑠 , 2(𝑘+1)𝑠 · 𝑡𝑘+1) = 2
𝑂 (𝑠) · 𝑡𝑂 (1)

time and use workspace

𝑂

(
𝑠 + log 𝑡 + log

(
2
(𝑘+1)𝑠 · 𝑡𝑘+1

))
= 𝑂 (𝑠 + log 𝑡).

This shows that our catalytic machine runs in 2
𝑂 (𝑠) · 𝑡𝑂 (1) time

and uses 𝑂 (𝑠 + log 𝑡) workspace simultaneous, which implies that

𝐿 ∈ CTISP
[
2
𝑂 (𝑠) · 𝑡𝑂 (1) , 𝑠 + log 𝑡

]
. In particular, CLP = CL ∩ P

holds if we take 𝑡 (𝑛) = 𝑛 and 𝑠 (𝑛) = log𝑛. □

From Theorem 3.2 we immediately obtain multiple corollaries.

Corollary 1.3.

CL ⊆ P ⇐⇒ CL = CLP.

Proof. Suppose that CL ⊆ P, we know by Theorem 3.2 that

CLP = CL ∩ P = CL. On the other hand, CL = CLP immediately

implies that CL ⊆ P as CLP ⊆ P. □

Corollary 1.4.

ZPP = P =⇒ CL = CLP.

Proof. Suppose that ZPP = P, we know that CL ⊆ ZPP ⊆ P.
This immediately implies that CL = CL ∩ P = CLP. □

562

STOC ’25, June 23–27, 2025, Prague, Czechia James Cook, Jiatu Li, Ian Mertz, and Edward Pyne

3.3 A New Uniform Upper Bound for CL
We now use the proof of Theorem 3.2 to obtain the first half of

Theorem 1.7. Our only change will be to no longer assume that

we are dealing with a language in P, but rather in ZPP. Buhrman,

Cleve, Koucký, Loff, and Speelman [2] showed that in fact such a

containment holds without any further assumptions:

Theorem 3.3 ([2]). For all space constructible functions 𝑠 :=

𝑠 (𝑛) ≥ log𝑛,

CSPACE [𝑠] ⊆ ZPTIME
[
2
𝑂 (𝑠)

]
.

In particular, CL ⊆ ZPP.

This is sufficient to prove the forward direction of Theorem 1.7.

Theorem 3.4. For all space constructible functions 𝑠 := 𝑠 (𝑛) ≥
log𝑛,

CSPACE [𝑠] ⊆ CZPTISP
[
2
𝑂 (𝑠) , 𝑠

]
In particular, CL ⊆ CZPLP.

Proof. Let 𝐿 ∈ CSPACE [𝑠] and 𝑀 be a catalytic 𝑂 (𝑠)-space
machine that decides 𝐿. Thus by Theorem 3.3 we know that 𝐿 ∈
ZPTIME

[
2
𝑂 (𝑠)

]
. Let 𝑀′ be the (possibly space inefficient) zero-

error probabilistic machine that decides 𝐿 in time𝑂 (2𝑘 ·𝑠) for some

constant 𝑘 .

Consider the following probabilistic catalytic machine for 𝐿.

Given any input 𝑥 , we first simulate the machine DetComp of

Theorem 3.1 for𝑀 with input (𝑥, 122𝑘 ·𝑠).
• If DetComp returns a value rather than ⊥, we return that

value and halt. Note that by Theorem 3.1 the catalytic tape

has been successfully reset and DetComp outputs 𝐿(𝑥).
• Otherwise, we run the zero-error probabilistic machine𝑀′

on the last 2
2𝑘 ·𝑠

bits on the catalytic tape (which are all zero

after running DetComp). This is possible as we can probe

sufficiently many random bits, store them on the catalytic

tape, and simulate𝑀′ using the stored random bits. It stores

the output of 𝑀′ (which is in {0, 1,⊥}), set the last 2(𝑘+1)𝑠
bits on the catalytic tape back to all zero, and call the de-

compression algorithm DetDecomp with input (𝑥, 12(𝑘+1)𝑠)
to reset the catalytic tape. Then we output the stored output

value of𝑀′.

Note that in the former case, our algorithm decides whether 𝑥 ∈ 𝐿
with certainty; in the latter case, our algorithm simulates 𝑀′ so
that it never makes mistake and outputs ⊥ with probability at most

1/3. This concludes the correctness of the algorithm.

It is clear that DetComp and DetDecomp run in time poly(2𝑠)
and use 𝑂 (𝑠 + log(2𝑂 (𝑠))) = 𝑂 (𝑠) workspace. Therefore, the algo-
rithm runs in time 2

𝑂 (𝑠)
and uses 𝑂 (𝑠) workspace simultaneous,

which implies that 𝐿 ∈ CZPTISP
[
2
𝑂 (𝑠) , 𝑠

]
. In particular, this im-

plies CL ⊆ CZPLP if we take 𝑠 (𝑛) = log𝑛. □

Acknowledgements
Jiatu Li and Edward Pyne thank Oliver Korten and Roei Tell for

bringing the link between catalytic computation and LossyCode to
our attention. James Cook and Ian Mertz thank Noah Fleming, Toni-

ann Pitassi, and Morgan Shirley for early conversations regarding

timestamp compression. We thank Roei Tell, Igor Oliveira, Ninad

Rajgopal, Bruno Cavalar, and others for helpful conversations.

References
[1] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. 2022. On pure space vs

catalytic space. Theor. Comput. Sci. 921 (2022), 112–126. doi:10.1016/J.TCS.2022.
04.005

[2] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.

2014. Computingwith a full memory: catalytic space. In Proc. 46 Annual ACM Sym-
posium on Theory of Computing (STOC). 857–866. doi:10.1145/2591796.2591874

[3] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. 2018. Cat-

alytic Space: Non-determinism and Hierarchy. Theory Comput. Syst. (2018).
doi:10.1007/S00224-017-9784-7

[4] Lijie Chen, Roei Tell, and RyanWilliams. 2023. Derandomization vs Refutation: A

Unified Framework for Characterizing Derandomization. In Proc. 64 Annual IEEE
Symposium on Foundations of Computer Science (FOCS). doi:10.1109/FOCS57990.
2023.00062 To appear.

[5] James Cook and Ian Mertz. 2020. Catalytic approaches to the tree evaluation

problem. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020. ACM, 752–760. doi:10.1145/3357713.3384316

[6] James Cook and Ian Mertz. 2021. Encodings and the Tree Evaluation Problem.

Electron. Colloquium Comput. Complex. TR21-054 (2021). ECCC:TR21-054 https:

//eccc.weizmann.ac.il/report/2021/054

[7] James Cook and Ian Mertz. 2022. Trading Time and Space in Catalytic Branching

Programs. In 37th Computational Complexity Conference, CCC 2022, July 20-
23, 2022, Philadelphia, PA, USA (LIPIcs, Vol. 234), Shachar Lovett (Ed.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:21. doi:10.4230/LIPICS.CCC.

2022.8

[8] James Cook and Ian Mertz. 2024. Tree Evaluation is in Space O(log n · log log
n). In Proccedings of the 56nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2024. ACM, 1268–1278. doi:10.1145/3618260.3649664

[9] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul

Santhanam. 2012. Pebbles and Branching Programs for Tree Evaluation. ACM
Trans. Comput. Theory 3, 2 (2012), 4:1–4:43. doi:10.1145/2077336.2077337

[10] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.

2020. Randomized and Symmetric Catalytic Computation. In Computer Science
- Theory and Applications - 15th International Computer Science Symposium in
Russia, CSR 2020. doi:10.1007/978-3-030-50026-9_15

[11] Dean Doron, Edward Pyne, and Roei Tell. 2024. Opening Up the Distinguisher:

A Hardness to Randomness Approach for BPL = L that Uses Properties of BPL.

In Proc. 56th Annual ACM Symposium on Theory of Computing (STOC). doi:10.
1145/3618260.3649772

[12] Yfke Dulek. 2015. Catalytic space: on reversibility and multiple-access random-

ness. private communication.

[13] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. 2018. Hardness of

Function Composition for Semantic Read once Branching Programs. In 33rd
Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA (LIPIcs, Vol. 102), Rocco A. Servedio (Ed.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 15:1–15:22. doi:10.4230/LIPICS.CCC.2018.15

[14] Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker. 2025. Fully

Characterizing Lossy Catalytic Computation. In Proc. 16 Conference on Innovations
in Theoretical Computer Science (ITCS) (LIPIcs, Vol. 325). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 50:1–50:13. doi:10.4230/LIPICS.ITCS.2025.50

[15] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. 2019. Unam-

biguous Catalytic Computation. In 39th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2019 (LIPIcs,
Vol. 150). 16:1–16:13. doi:10.4230/LIPICS.FSTTCS.2019.16

[16] William M. Hoza. 2021. Better Pseudodistributions and Derandomization for

Space-Bounded Computation. In Proceedings of the 25th International Conference
on Randomization and Computation (RANDOM). 28:1–28:23. doi:10.4230/LIPICS.
APPROX/RANDOM.2021.28

[17] Rahul Ilango, Jiatu Li, and R. Ryan Williams. [2023] ©2023. Indistinguishability

obfuscation, range avoidance, and bounded arithmetic. In Proc. 55th Annual ACM
Symposium on Theory of Computing (STOC). 1076–1089. doi:10.1145/3564246.
3585187

[18] Kazuo Iwama and Atsuki Nagao. 2019. Read-Once Branching Programs for

Tree Evaluation Problems. ACM Trans. Comput. Theory 11, 1 (2019), 5:1–5:12.

doi:10.1145/3282433

[19] Oliver Korten. 2021. The Hardest Explicit Construction. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022. IEEE, 433–444. doi:10.1109/FOCS52979.2021.00051

[20] Oliver Korten. 2022. Derandomization from time-space tradeoffs. In Proc. 37th
Annual IEEE Conference on Computational Complexity (CCC). doi:10.4230/LIPICS.
CCC.2022.37

[21] Michal Koucký. 2016. Catalytic computation. Bull. EATCS 118 (2016). http:

//eatcs.org/beatcs/index.php/beatcs/article/view/400

563

https://doi.org/10.1016/J.TCS.2022.04.005
https://doi.org/10.1016/J.TCS.2022.04.005
https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1007/S00224-017-9784-7
https://doi.org/10.1109/FOCS57990.2023.00062
https://doi.org/10.1109/FOCS57990.2023.00062
https://doi.org/10.1145/3357713.3384316
https://eccc.weizmann.ac.il/report/2021/054
https://eccc.weizmann.ac.il/report/2021/054
https://doi.org/10.4230/LIPICS.CCC.2022.8
https://doi.org/10.4230/LIPICS.CCC.2022.8
https://doi.org/10.1145/3618260.3649664
https://doi.org/10.1145/2077336.2077337
https://doi.org/10.1007/978-3-030-50026-9_15
https://doi.org/10.1145/3618260.3649772
https://doi.org/10.1145/3618260.3649772
https://doi.org/10.4230/LIPICS.CCC.2018.15
https://doi.org/10.4230/LIPICS.ITCS.2025.50
https://doi.org/10.4230/LIPICS.FSTTCS.2019.16
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.28
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1145/3282433
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.4230/LIPICS.CCC.2022.37
https://doi.org/10.4230/LIPICS.CCC.2022.37
http://eatcs.org/beatcs/index.php/beatcs/article/view/400
http://eatcs.org/beatcs/index.php/beatcs/article/view/400

The Structure of Catalytic Space: Capturing Randomness and Time via Compression STOC ’25, June 23–27, 2025, Prague, Czechia

[22] Jiatu Li, Edward Pyne, and Roei Tell. 2024. Distinguishing, Predicting, and

Certifying: On the Long Reach of Partial Notions of Pseudorandomness. In 65th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago,
IL, USA, October 27-30, 2024. IEEE, 1–13. doi:10.1109/FOCS61266.2024.00095

[23] David Liu. 2013. Pebbling Arguments for Tree Evaluation. CoRR abs/1311.0293

(2013). arXiv:1311.0293 http://arxiv.org/abs/1311.0293

[24] Ian Mertz. 2023. Reusing Space: Techniques and Open Problems. Bulletin of
EATCS 141, 3 (2023). http://eatcs.org/beatcs/index.php/beatcs/article/view/780

[25] Noam Nisan and Avi Wigderson. 1994. Hardness vs. randomness. Journal of
Computer and System Sciences 49, 2 (1994), 149–167. doi:10.1016/S0022-0000(05)
80043-1

[26] Edward Pyne. 2024. Derandomizing Logspace with a Small Shared Hard Drive. In

39th Computational Complexity Conference, CCC 2024 (LIPIcs, Vol. 300). 4:1–4:20.

doi:10.4230/LIPICS.CCC.2024.4

[27] Edward Pyne, Ran Raz, and Wei Zhan. 2023. Certified Hardness vs. Randomness

for Log-Space. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023. doi:10.1109/FOCS57990.2023.00061

[28] Michael E. Saks and Shiyu Zhou. 1999. BPHSPACE[𝑆] ⊆ DSPACE[𝑆3/2].
Journal of Computer and System Sciences 58, 2 (1999), 376–403. doi:10.1006/JCSS.
1998.1616

[29] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In Proc. 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 162–167. doi:10.1109/SFCS.1986.25

Received 2024-11-04; accepted 2025-02-01

564

https://doi.org/10.1109/FOCS61266.2024.00095
https://arxiv.org/abs/1311.0293
http://arxiv.org/abs/1311.0293
http://eatcs.org/beatcs/index.php/beatcs/article/view/780
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPICS.CCC.2024.4
https://doi.org/10.1109/FOCS57990.2023.00061
https://doi.org/10.1006/JCSS.1998.1616
https://doi.org/10.1006/JCSS.1998.1616
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	1.1 Derandomizing Catalytic Space
	1.2 The Power of Time-Bounded Catalytic Space
	1.3 Synthesis: Characterizing Catalytic Space via Randomness and Time
	1.4 Technical Overview
	1.5 Future Questions
	1.6 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 Complexity Classes for Catalytic Computation
	2.3 Configuration Graphs of Catalytic Machines

	3 Structural Results for CL
	3.1 CL Reduces to Lossy Code
	3.2 Structural Results for CL and CLP
	3.3 A New Uniform Upper Bound for CL

	References

