
Goldreich’s One-Way Function Candidate and

Myopic Backtracking Algorithms

James Cook1,�, Omid Etesami1,��, Rachel Miller2,� � �, and Luca Trevisan1,†

1 Computer Science Division, U.C. Berkeley
{jcook,etesami,luca}@cs.berkeley.edu

2 University of Virginia
rachel.an.miller@gmail.com

Abstract. Goldreich (ECCC 2000) proposed a candidate one-way func-
tion construction which is parameterized by the choice of a small pred-
icate (over d = O(1) variables) and of a bipartite expanding graph of
right-degree d. The function is computed by labeling the n vertices on
the left with the bits of the input, labeling each of the n vertices on
the right with the value of the predicate applied to the neighbors, and
outputting the n-bit string of labels of the vertices on the right.

Inverting Goldreich’s one-way function is equivalent to finding solu-
tions to a certain constraint satisfaction problem (which easily reduces
to SAT) having a “planted solution,” and so the use of SAT solvers con-
stitutes a natural class of attacks.

We perform an experimental analysis using MiniSat, which is one
of the best publicly available algorithms for SAT. Our experiment shows
that the running time required to invert the function grows exponentially
with the length of the input, and that such an attack becomes infeasible
already with small input length (a few hundred bits).

Motivated by these encouraging experiments, we initiate a rigorous
study of the limitations of back-tracking based SAT solvers as attacks
against Goldreich’s function. Results by Alekhnovich, Hirsch and Itsyk-
son imply that Goldreich’s function is secure against “myopic” back-
tracking algorithms (an interesting subclass) if the 3-ary parity predicate
P (x1, x2, x3) = x1 ⊕ x2 ⊕ x3 is used. One must, however, use non-linear
predicates in the construction, which otherwise succumbs to a trivial
attack via Gaussian elimination.

We generalized the work of Alekhnovich et al. to handle a more general
class of predicates, and we present a lower bound for the construction
that uses the predicate Pd(x1, . . . , xd) := x1⊕x2⊕· · ·⊕xd−2⊕(xd−1∧xd)
and a random graph.

� Work supported by the National Science Foundation under grant No. CCF-0729137
and by the National Sciences and Engineering Research Council of Canada under
a PGS award.

�� Work supported by the National Science Foundation under grant No. CCF-
0729137.

� � � Work done at U.C. Berkeley, supported by an NSF SUPERB fellowship.
† Work supported by the National Science Foundation under grant No. CCF-0729137

and by the BSF under grant 2002246.

O. Reingold (Ed.): TCC 2009, LNCS 5444, pp. 521–538, 2009.
c© International Association for Cryptologic Research 2009

522 J. Cook et al.

1 Introduction

Goldreich [11] proposed in 2000 a candidate one-way function construction
based on expanding graphs. His construction is parameterized by the choice of
a bipartite graph with n vertices per side and right-degree d (where d is either
a constant independent of n, or grows very moderately as O(log n)) and of a
boolean predicate P : {0, 1}d → {0, 1}. To compute the function, on input
x ∈ {0, 1}n we label the vertices on the left by the bits of x, and we label each
vertex on the right by the value of P applied to the label of the neighbors. The
output of the function is the sequence of n labels of the vertices on the right.

Goldreich’s Function and Cryptography in NC0. A function is com-
putable in NC0 if every bit of the output depends only on a constant number of
bits of the input. One can see any NC0-computable function as a generalization
of Goldreich’s function in which the graph is allowed to be arbitrary, subject to
having bounded right-degree, and in which different predicates can be used for
different bits of the output.

Cryan and Miltersen [7] first raised the question of whether cryptographic
primitives (their work focused on pseudorandom generators) can be computed in
NC0. Mossel, Shpilka and Trevisan [13] construct, for arbitrarily large constant
c, a function f : {0, 1}n → {0, 1}cn based on a bipartite graph of right-degree 5
and the fixed predicate P (x1, · · · , x5) := x1⊕x2⊕x3⊕ (x4 ∧x5), and show that
the function computes a small-bias generator. Such a construction may in fact
be a pseudorandom generator, and hence a one-way function.1

Applebaum, Ishai and Kushilevtiz [4,5] show that, under standard assump-
tions, there are one-way functions and pseudorandom generators that can be
computed in NC0; their one-way function is computable with right-degree 3.2

In their construction, the graph encodes the computation of a log-space machine
computing a one-way function that is used as a primitive.

In this paper, we are interested in the security of Goldreich’s original proposal,
implemented using a random graph and a fixed predicate.

Goldreich’s Function and DPLL Algorithms. Inverting Goldreich’s one-
way function (and, indeed, inverting any one-way function that is computable
in NC0) can be seen as the task of finding a solution to a constraint satisfaction
problem with a planted solution. A plausible line of attack against such a con-
struction is thus to employ a general-purpose SAT solver to solve the constraint
satisfaction problem. We performed an experimental study using MiniSat, which
is one of the best publicly available SAT solvers, and has solved instances with
several thousand variables. Using a random graph of right-degree 5, and the

1 The graph used in this construction, however, is not a random graph or a strong
expander graph of right-degree 5, so this is not an instantiation of Goldreich’s pro-
posal.

2 This is the best possible, because it is easy to show that no function based on a
bipartite graph of right-degree 2 can be one-way, by reducing the problem of finding
the inverse to a 2SAT instance.

Goldreich’s One-Way Function Candidate 523

predicate (x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5)), we observed an exponential increase of
the running time as a function of the input length, and an attack with MiniSat
appears infeasible already for moderate input lengths (a few hundred bits). See
Appendix A.

Our goal in this paper is to provide a rigorous justification for these experi-
mental results, and to show that “DPLL-style” algorithms based on backtracking
(such as most general SAT solvers) cannot break Goldreich’s construction in sub-
exponential time. We restrict ourselves to algorithms that instantiate variables
one at a time, in an order chosen adaptively by a “scheduler” procedure, and
then recurse on the instance obtained by by fixing the variable to zero and then
to the instance obtained by fixing the variable to one, or viceversa (the scheduler
decides which assignment to try first). The recursion stops if the current partial
assignment contradicts one of the constraints in the instance, or if we find a
satisfying assignment.

When such an algorithm runs on an unsatisfiable instance, then a transcript of
the algorithm gives a “tree-like resolution proof” of unsatisfiability; a number of
techniques are known to prove exponential lower bounds on the size of tree-like
resolutions proofs of unsatisfiability, and so such proofs give lower bounds to the
running time of any such algorithm, regardless of how the scheduler is designed.

When dealing with satisfiable instances, however, one cannot prove lower
bounds without putting some restriction on the scheduler. (If unrestricted in
complexity, the scheduler could compute a satisfying assignment, and then as-
sign the variables accordingly, making the algorithm converge in a linear number
of steps.)

The Lower Bound of Alekhnovich et al. Alekhnovich, Hirsch and Itsyk-
son [3] consider two such restrictions: they consider (i) “myopic” algorithms in
which the scheduler chooses which variable to assign based on only a bounded
number of variables and clauses of the current formula, and (ii) “drunken” algo-
rithms in which the order of variables is chosen arbitrarily by the scheduler, but
the choice of whether to assign first zero or one to the next chosen variable is
made randomly with equal probability. The result of the second type is proven
for carefully designed instances, and it remains an open question to prove a
lower bound for drunken algorithms on a random satisfiable constraint satisfac-
tion problem. Lower bounds of the first type are proven for random instances,
and they are proved via a reduction to the problem of certifying unsatisfiability:
Alekhnovich et al. show that a myopic algorithm, with high probability, after
assigning a certain number of variables will be left with an instance that is unsat-
isfiable, but for which there is no sub-exponential size tree-like resolution proof
of unsatisfiability. Hence the algorithm will take an exponential amount of time
before it realizes it has chosen a bad partial assignment.

Our Results. The result of Alekhnovich et al. applies to myopic algorithms
for random instances of 3XOR with a planted solution, and provided a lower
bound for myopic DPLL inversion algorithms for the instantiation of Goldreich’s
proposal using the 3XOR predicate.

524 J. Cook et al.

Unfortunately, the use of 3XOR as a predicate in Goldreich’s construction
leads to a total break via Gaussian elimination, so our goal is to extend the result
of Alekhnovich et al. to a setting in which we have either a random predicate or
the predicate (x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) which is inspired by the work of
Mossell et al.

In order to extend the work of Alekhnovich et al. to the setting of Goldreich’s
one way functions, we need to make the following changes:

– The proof in [3] uses the fact that all constraints have arity 3. It is not difficult
to adapt it to handle linear constraints of larger constant arity, by relying on
the strong expansion properties which are true of random constraint graphs.

– The proof in [3] uses the linearity of the constraints. We show that it is
sufficient for the predicate to be such that it remains nearly balanced even
after many variables have been fixed to arbitrary values. For example, a d-
ary parity remains perfectly balanced even after d− 1 variables are assigned
arbitrary variables. The predicate (x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) remains
perfectly balanced even after d−3 variables are assigned arbitrary variables,
and a random predicate remains ε-close to balanced after any d−O(log d/ε)
variables are fixed to arbitrary values. (Those parameters are sufficient for
our proof to go through.)

– The proof in [3] assumes that there is a unique solution, and this is not true
in our setting. We show that the proof carries over if one assumes that the
total number of pairs x, y such that f(x) = f(y) is at most 2(1+ε)n for small
ε. We are able to show that such a condition is satisfied by the predicate
(x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)) and by the choice of a highly-expanding
graph, with ε = 2−Ω(d). We believe that the same result holds with high
probability if we choose a random d-ary predicate, but we have not been
able to prove it.

With such results, we are able to show an exponential lower bound for myopic
algorithms in a construction that uses a random graph and the predicate (x1 ⊕
· · · ⊕ xd−2 ⊕ (xd−1 ∧ xd)). If we consider the construction that uses a random
graph and a random predicate, then we have a conditional exponential lower
bound under the assumption that the resulting function is nearly injective.

Goldreich’s Analysis. Goldreich [11] considered the following algorithm for
computing x given y = f(x). The algorithm proceeds in n steps, revealing the
output bits one at a time. Let Ri be the set of inputs connected to the first i
outputs. Then in the ith step, the algorithm computes the list Li of all strings
in {0, 1}Ri which are consistent with the first i bits of y. Goldreich proves that
if the graph satisfies an expansion condition, then for a random input x, the
expected size of one of the sets Li is exponentially large.

Since Goldreich’s algorithm is forced to consider all consistent assignments
to the bits in each set Ri, it takes no less time than a (myopic) backtracking
algorithm that chooses the input bits in the same order, and possibly much more
time. For this reason, our new lower bounds are more general.

Goldreich’s One-Way Function Candidate 525

Open Questions. We believe that there is motivation for further experimental
and rigorous analysis of Goldreich’s construction.

The main limitation of the present work is the somewhat artificial setup of
myopic algorithms, which fails to capture certain natural “global” heuristics
used in SAT solvers. Since the algorithm is required to work only with partial
information on the object given as an input, negative results for myopic algo-
rithms are similar in spirit (but very different technically) to results on “space
bounded cryptography.” It would be very interesting to have a lower bounds for
drunken algorithms, which are restricted in a way that is more computational
than information-theoretic. As a first step, it would be interesting to show that
drunken algorithms take exponential time to find planted solutions in a random
3XOR instance.

It would also be interesting to show that no “variation of Gaussian elim-
ination” can invert Goldreich’s function when non-linear predicates are used.
Unfortunately it is not clear how to even formalize such a statement.

2 Preliminaries

2.1 Goldreich’s Function

Goldreich [11] constructs a function f : {0, 1}n → {0, 1}n parameterized by a
d-ary predicate P and a bipartite graph G = (V, E) connecting n input nodes ui

on the left to n output nodes vi on the right. The output nodes all have degree
d. To compute the function, on input x ∈ {0, 1}n, we label the input nodes with
the bits of x, and label each output node by the value of P applied to the labels
of its neighbors. The output of the function is the sequence of n labels of the
output nodes. For example, if the neighborhood of vi is {uj1 , uj2 , . . . , ujd

}, then

(f(x))i = P (xj1 , xj2 , . . . , xjd
).

We denote by A the n × n matrix adjacency matrix of G, whose columns
correspond to input nodes and whose rows correspond to output nodes:

Aij =

{
1 (uj , vi) ∈ E

0 (uj , vi) �∈ E
.

Goldreich suggests using a random predicate P , and a graph G with expansion
properties.

2.2 Myopic Backtracking Algorithms

We consider the class of algorithms that might invert Goldreich’s function by
backtracking.

First, we need a notion of a partial truth assignment.

Definition 2.1 (partial assignment). Taken from [2]. A partial assignment
is a function ρ : [n]→ {0, 1, ∗}. Its set of fixed variables is Vars(ρ)=ρ−1({0, 1}).

526 J. Cook et al.

Its size is defined to be |ρ| = |Vars(ρ)|. Given f : {0, 1}n → {0, 1}n, the restric-
tion of f by ρ, denoted f |ρ, is the function obtained by fixing the variables in
Vars(ρ) and allowing the rest to vary.

Definition 2.2. A backtracking algorithm for solving an equation f(x) = b for
x is defined by two procedures N and T. N takes a partial assignment ρ and
returns the index of a new variable N(ρ) ∈ [n] to assign, and T chooses a truth
value T(ρ) ∈ {0, 1} for xN(ρ). More precisely, the algorithm has the form:

– Initialize ρ to the empty truth assignment (∗, ∗, . . . , ∗).
– While not all variables in ρ are fixed,
• j ← N(ρ).
• Update ρ by assigning xj the truth value T(ρ).
• If there is row i such that f(ρ)i is determined by ρ but f(ρ)i �= bi then

backtrack.

We study a special class of backtracking algorithms which we call myopic back-
tracking algorithms, after [1].

Definition 2.3. A myopic backtracking algorithm for f(x) = b is a backtracking
algorithm where procedures N and T are restricted in that they are not allowed to
see all the output bits in vector b. More precisely, myopic backtracking algorithm
of parameter K have the following properties:

– In the beginning of the algorithm, the algorithm does not have the value of
any of b.

– At each step of fixing a new variable, the algorithm is allowed to ask the value
of K output bits corresponding to K equations chosen by the algorithm.

– When we backtrack from a step we have already taken, we lose the value of
the output bits that were revealed to us at that step.

Thus, in the middle of the algorithm, when the partial assignment is ρ, the algo-
rithm sees the values of K|Vars(ρ)| output bits, and the outputs of procedures N
and T are allowed to depend only on these K|Vars(ρ)| output bits. But notice
that procedures N and T can use the structure of the function f ; they have
restricted access to only b.

Notice that in the above definitions, there is no restriction on the computa-
tional complexity of procedures N and T. Therefore without the myopic con-
straint, there is no way to prevent T from guiding the algorithm immediately
towards the correct solution.

The work in [3] gives a lower bound for myopic backtracking algorithms
for SAT instances. They translate a system of linear equations Ax = b into
a CNF formula. Similarly, for inverting Goldreich’s function f(x) = b for a fixed
b ∈ {0, 1}n, we can define a d-CNF formula Φb(x) which is logically equivalent
to the statement f(x) = b. The i-th bit of b translates to a set of at most 2d

clauses that enforce the constraint P (xSi) = bi. Then the problem of inverting
f can be reduced to finding a solution to the SAT instance Φb. Notice that (my-
opic) backtracking algorithms for solving Φb are similar to (myopic) backtracking
algorithms for solving f(x) = b.

Goldreich’s One-Way Function Candidate 527

In [3] the authors consider a notion of myopic backtracking algorithms that
is slightly more powerful, called myopic DPLL algorithms after [12,8,1], which
might get more information about b using two new rules called Unit Clause Prop-
agation and Pure Literal Elimination. It can be seen that when the equations of
f(x) = b are linear, these two rules do not give an advantage to the backtracking
algorithm. However, the same reduction from DPLL to ordinary backtracking
does not apply to the more general case f(x) = b which we consider. Therefore,
in this paper we restrict ourselves to backtracking algorithms.

2.3 Random Predicates

We follow Goldreich’s suggestion in choosing P : {0, 1}d → {0, 1} uniformly at
random. Here we define two useful properties that most random predicates have.

Definition 2.4 (robust predicate). P : {0, 1}d→ {0, 1} is h-robust iff every
restriction ρ such that f |ρ is constant satisfies d − |ρ| ≤ h [2, Definition 2.2].
For example, the predicate that sums all its inputs modulo 2 is 0-robust.

Definition 2.5 (balanced predicate). P : {0, 1}d → {0, 1} is (h, ε)-balanced
if, after fixing all variables but h + 1 of them,

|Pr[P (x) = 0]− 1
2
| ≤ ε.

For example, predicates of the form Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) are
(2, 0)-balanced and (1, 1

4)-balanced. The predicate that sums all its inputs is
(0, 0)-balanced.

Lemma 2.6. A random predicate on d variables is (Θ(log d
ε), ε)-balanced with

probability 1− exp[−poly(d/ε)].

(We omit the proof to save space.)

Corollary 2.7. A random predicate on d variables is Θ(log d)-robust with prob-
ability 1− exp[−poly(d)].

2.4 Expansion Properties

Let G be a bipartite graph with n nodes on each side and right-degree d. Equiv-
alently, let A be an n× n matrix with d ones and n− d zeros in each row.

Definition 2.8 (Boundary and Neighborhood). Taken from [3, Definition
2.1]. Let I be a set of output nodes. Its boundary, denoted ∂I, is the set of all
nodes j ∈ U such that there is exactly one edge from j to I. The neighborhood
of I, Γ (I) ⊆ U is the set of all nodes connected to I.

Definition 2.9 (Expansion). Taken from [3, Definition 2.1]. G (or A) is an
(r, d, c)-boundary expander if for all I ⊆ V, (|I| ≤ r ⇒ |∂I| ≥ c|I|). G (or A) is
an (r, d, c)-expander if ∀I ⊆ V, (|I| ≤ r⇒ |Γ (I)| ≥ c|I|).

528 J. Cook et al.

Lemma 2.10. Analogous to [3, Lemma 2.1]. Every (r, d, c)-expander is an
(r, d, 2c− d)-boundary expander.

Throughout our paper, we will use c to denote neighborhood expansion, and c′

to denote boundary expansion, with c′ = 2c− d.

2.5 Closure Operation

We define the closure of a set of input nodes, or columns of A.

Definition 2.11 (closure). Analogous to [3, Definition 3.2]. For a set of
columns J ⊆ [n], define the following relation on 2[n]:

I �J I1 ⇐⇒ I ∩ I1 = ∅ ∧ |I1| ≤ r

2
∧

∣∣∣∣∣∂(I1) \
[⋃

i∈I

Ai ∪ J

]∣∣∣∣∣ < c/2|I1|.

Define the closure of J , Cl(J), as follows. Let G0 = ∅. Having defined Gk,
choose a non-empty Ik such that Gk �J Ik, set Gk+1 = Gk ∪ Ik, and remove
equations Ik from matrix A. (Fix an ordering on 2[n] to ensure a deterministic
choice of Ik.) When k is large enough that no non-empty Ik can be found, set
Cl(J) = Gk.

We omit the proofs in this section, since similar facts are proved in Section 3
of [3].

Lemma 2.12. Analogous to [3, Lemma 3.5]. If |J | < cr
4 , then |Cl(J)| < 2c−1|J |.

Lemma 2.13. Analogous to [3, Lemma 3.4]. Assume that A is an arbitrary
matrix and J is a set of its columns. Denote by Â the matrix that results from A
by removing the rows in Cl(J) and the columns in

⋃
i∈Cl(J) Ai. If Â is non-empty

then it is an (r/2, d, c/2)-boundary expander.

Definition 2.14. From [3, Definition 3.4]. A substitution ρ is said to be locally
consistent w.r.t. the function f(x) = b if and only if ρ can be extended to an
assignment on X which satisfies the equations corresponding to Cl(Vars(ρ)):

(f(x))Cl(Vars(ρ)) = bCl(Vars(ρ))

Lemma 2.15. Analogous to [3, Lemma 3.6]. Assume that f employs a (r, d, c)-
boundary expander and a h-robust predicate with c > 2h. Let b ∈ {0, 1}n and ρ be
a locally consistent partial assignment. Then for any set I ⊆ [n] with |I| ≤ r/2,
ρ can be extended to an assignment x which satisfies the subsystem (f(x))I = bI.

3 Myopic Algorithms Use Exponential Time in the
Average Case

Theorem 3.1. Assume A is an n× n (r, d, c)-boundary expander with left and
right degree d and that P is an (h, ε)-balanced predicate. Let f be Goldreich’s

Goldreich’s One-Way Function Candidate 529

function for A and P , and assume f is M -to-one-on-average, in the sense that
the number of pairs (x, y) such that f(x) = f(y) is at most M2n. Let A be any
myopic backtracking algorithm. Choose x ∈ {0, 1}n uniformly at random and let
b = f(x). Let F = �2c−d−h�−1, and s = F/(F +d(d−1)). Then the probability
that A solves f(x) = b in time 2O(r(c−h)) is at most

M2−s� cr
4dK �

(
1 + 2ε

1− 2ε

)r/2

. (1)

(We can relax the degree requirement to say that A has right degree dright, and
the nodes in every set of s� cr

4dK � input nodes have average degree at most dleft,
where in this case s = F/(F + dleft(dright − 1)).)

Applications of Theorem 3.1

1. Use the predicate Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) and a random
graph of right-degree d. Then h = Θ(1), ε = 0, c = d/2 + Θ(d) and r =
Θ(n/d). This gives F = Θ(d) and s = Θ(1/d). In Section 4, we show that
with high probability M = 2n2−Ω(d)

. Furthermore, the average degree of any
set of s� cr

4dK � input nodes is at most 3d with high probability. With these
parameters, Theorem 3.1 says that for constant K, the myopic algorithm
takes time 2Θ(n) with probability 1− 2−Cn, where C depends on d and K.

2. Use a random predicate P and a random graph of right-degree d. Then with
high probability, P is (h, ε) balanced, with h = Θ(log d) and ε = 1/poly(d).
Conditioned on the assumption M = 2nO(d−C0) for C0 > 2, Theorem 3.1
says as before that for constant K, the myopic algorithm takes time 2Θ(n)

with probability 1− 2−C1n, where C1 depends on d and K.

The rest of this section is devoted to proving Theorem 3.1. First in Section 3.1
we show how it is possible to assume that after a fixed number of steps, the
partial truth assignment ρ made by the algorithm will be locally consistent.
Then in Section 3.2 we show that the algorithm can only have selected one of
many possible locally consistent partial truth assignments – and for any fixed
b ∈ {0, 1}n, most of these partial assignments will be wrong. Thus, with high
probability, the algorithm will have selected globally inconsistent values that
lead to an unsatisfiable formula. We then show in Section 3.3 that any resolution
proof showing that this new formula is unsatisfiable has size 2Ω(r(c−h)), so the
algorithm must take that many steps before correcting its mistake.

3.1 Clever Myopic Algorithms

Without loss of generality, we allow our algorithm to be a “clever” myopic algo-
rithm in the sense that, as defined in [3], it satisfies these two properties.

1. Let J be the set of indices of all variables xj that appear in equations whose
output bit bi has been revealed. Then the algorithm may also read all clauses
in Cl(J) for free and reveal the corresponding new variables.

530 J. Cook et al.

2. The algorithm never makes stupid guesses: whenever the equations corre-
sponding to the revealed output bits bi determine the value of a variable xj ,
the algorithm will never make the wrong assignment for xj .

Property 2 can only reduce the number of backtracking steps taken. Property 1
is justified by the following proposition.

Proposition 3.2. Analogous to [3, Proposition 3.1]. After the first � cr
4dK � steps

a clever myopic algorithm reads at most r/2 bits of b.

Proof. At each step, the algorithm makes K clause-queries, asking for dK vari-
able entries. This sums to at most dK(cr/4dK) = cr/4 variables, which by
Lemma 2.12 will result in at most r/2 bits of b. ��

Once we have assumed that our algorithm is clever, the following proposition
shows that we can further assume the algorithm only makes locally consistent
assignments in its first �cr/4dK� steps.

Proposition 3.3. Analogous to [3, Proposition 3.2]. During the first � cr
4dK �

steps the current partial assignment made by a clever myopic algorithm is locally
consistent, and so the algorithm will not backtrack.

Proof. This statement follows by repeated application of Lemma 2.15. Note that
clever myopic algorithms are required to select a locally consistent choice of vari-
ables if one is available. The proof is accomplished through induction. Initially,
the partial assignment is empty, and so is locally consistent. For each step t
(with t < cr

4dK) with a locally consistent partial assignment ρt, a clever myopic
algorithm will extend this assignment to ρt+1 which is also locally consistent if
possible. By Lemma 2.15 it can always do so as long as |Cl(Vars(ρt))∪{xj}| ≤ r/2
for the newly chosen xj . ��

3.2 The Probability of a Correct Guess Is Small

Now choose b randomly from the set of attainable outputs of f(x); more formally,
let x ∼ Unif({0, 1}n) and b = f(x). Initially, the value of b should be hidden
from the algorithm. Whenever the algorithm reveals a clause corresponding to
the ith row of A, the ith-bit of b should be revealed to the algorithm. We consider
the situation after � cr

4dK � steps of the algorithm. By Proposition 3.3, the current
partial assignment must be locally consistent, and no backtracking will have
occurred. Thus, at this point in time we observe the algorithm in the � cr

4dK �-th
vertex v in the leftmost branch of its backtracking tree. By Proposition 3.2, the
algorithm has revealed at most r/2 bits of b.

Define random variable Iv ⊆ [n] to be the set of output bits revealed after
� cr

4dK � steps. Similarly define random variable ρv to be the the partial truth
assignment given by the algorithm at that time. Define Rv = Vars(ρv). Hence
|Rv| = � cr

4dK �.

Goldreich’s One-Way Function Candidate 531

Definition 3.4. Let I ⊆ [n], R ⊆ [n], ι ∈ {0, 1}I and ρ ∈ {0, 1}R. We say
(I, R, ι, ρ) is a consistent state if

Pr[Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ] > 0.

Put another way, (I, R, ι, ρ) is a consistent state iff there exists some x ∈ {0, 1}n
such that after � cr

4dK � steps, I is exactly the set of revealed bits, R is exactly the
set of assigned variables, ρ is the values assigned those variables, and bI = ι.

Our first attempt at a proof is to show that there are many choices for ρv that
are locally consistent. Intuitively, if the number of those possible choices for ρ is
large compared to M , we expect the algorithm to make the wrong choice with
high probability. This line of reasoning would need a result of the following form.

Lemma 3.5. Analogous to [3, Lemma 3.10]. Assume that an n × n matrix A
is an (r, d, c)-boundary expander and P is an (h, ε)-balanced predicate, and let
f be Goldreich’s function corresponding to A and P . Let X̂ ⊆ [n] be a set of
input variables with |X̂| < r. Choose x uniformly at random from {0, 1}n and
let b = f(x). Let Y ⊆ [n] be a set of output variables, |Y | < r. For i ∈ Y let 	i

be the constraint (f(x))i = bi, and let L = {	i : i ∈ Y }. Denote by L the set of
partial assignments who assign values to the variables in X̂ and can be extended
to complete truth assignments that satisfy L.

Let s be defined as in Theorem 3.1. Then log |L| ≥ s|X̂|.
In fact, our proof requires the following stronger lemma instead of Lemma 3.5,
which states that conditioned on what the algorithm has seen, the minimum
entropy of xRv is high.

Lemma 3.6. Let x, X̂, L, and s be as in Lemma 3.5. Then for any x̂ ∈
{0, 1}|X̂|,

Pr[x|X̂| = x̂|L] ≤ 2−s|X̂|
(

1 + 2ε

1− 2ε

)|L|
.

We postpone the proof of Lemma 3.6 (and do not prove Lemma 3.5, since we do
not use it). We are now prepared to complete the proof of the main theorem.

Proof (Theorem 3.1). Our goal is to bound the probability of the following event:

E = {ρv ∈ (f−1(b))Rv}.
We first condition on the state of the algorithm, considering all consistent states
in the sense of Definition 3.4:

Pr[E]

=
∑

(I,R,ι,ρ) consistent

Pr[E|Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ]·

Pr[Iv = I ∧Rv = R ∧ bIv = ι ∧ ρv = ρ]
=E[Pr[E|Iv, Rv, bIv , ρv]].

532 J. Cook et al.

Since the algorithm is deterministic and only observes the bits in bIv , the event
[Iv = I ∧Rv = R ∧ ρv = ρ] is implied by the event [bIv = ι] – put another way,
if bits of b outside the set of observed bits Iv are changed, the behavior of the
algorithm will not be affected, so the values of Iv, Rv and ρv will not change.
This gives us:

Pr[E]
=E[Pr[E|bIv]]

=E[Pr[ρv ∈ (f−1(b))Rv |bIv]]

≤E
[

max
ρ∗

v∈{0,1}Rv
|f−1(b)|Pr[ρ∗v = xv|bIv]

]
≤E[|f−1(b)|] max

Iv ,bIv ,ρ∗
v

Pr[ρ∗v = xv|bIv]

≤M2−s

(
1 + 2ε

1− 2ε

)r/2

.

In the last step, we applied Lemma 3.6, replacing X̂ by Rv, L by Iv and x̂ by ρ.
Note that |Iv| < r/2, so |L| < r/2 in the hypothesis of the lemma.

We have shown that it will be likely that ρv, though locally consistent, can not
be extended to satisfy b, and an unsatisfiable instance will occur. In Section 3.3,
we explore the running time of backtracking algorithms on unsatisfiable cases to
show if E does not occur, the algorithm will take time 2Ω(r(c−h)).

Proof of Lemma 3.6

Lemma 3.7. Fix any g ⊆ X̂. If each output in L has at most F = �2c−d−h�−1
of its d inputs in g, then ∀I ⊆ L, |∂I \ g| > h|I|.
Proof. Consider any subset I ⊆ L. By Lemma 2.10, |∂I| ≥ (2c−d)|I|, so |∂I\g| ≥
(2c− d− F)|I| > h|I|.
Lemma 3.8. Fix any g ⊆ X̂. If ∀I ⊆ L, |∂I \ g| > h|I|, then any par-
tial assignment ρ : g → {0, 1} can be extended to a complete assignment that
satisfies L.
Proof. We make our proof by contradiction; assume ρ cannot be extended to
satisfy the equations in L. Let k be a minimal set of unsatisfiable equations.
We assume our predicate is h-robust. ∀I ⊆ L, |∂I \ g| > h|I| implies that some
equation in I must have at least h+1 boundary elements outside of g. However,
no equation in k should have more than h boundary variables; otherwise, those
h+1 boundary variables could be set to a value that satisfies that equation, and
it should not be in the minimal set k.

Lemma 3.9. Let s and F be as in Theorem 3.1. We can find g ⊆ X̂ with
|g| ≥ s|X̂ |, such that no output has more than F inputs in g.

Goldreich’s One-Way Function Candidate 533

Proof. Construct g using the following algorithm:
– g ← ∅.

– ni ←
{

F i ∈ X̂

0 i �∈ X̂
.

– while ∃i, ni > 0,
• Invariant: If an output has F − a inputs in g, then for every input i

connected to it, ni ≤ a.
• g ← g ∪ {i}.
• ni ← ni − F .
• ∀j, if dist(i, j) = 2, then nj ← nj − 1.

We start with F |X̂| counters, and remove on average F +dleft(dright−1) counters
at every step. (Recall that output nodes have degree dright, and as long as |g| ≤
s� cr

4dK �, the average degree of g is at most dleft.) In the end,

|g| ≥ F |X̂|
F + dleft(dright − 1)

.

��
Proof (Lemma 3.6). Choose g ⊆ X̂ with |g| ≥ s|X̂ | as in Lemma 3.9. By
Lemma 3.7, every subset of L has a row with at least h + 1 boundary vari-
ables that are not in g. Therefore we can order the rows of L as 	1, . . . , 	|L| such
that setting Li = {	1, . . . , 	i}, for all i we have |Γ (i) \ (Γ (Li−1) ∪ g)| ≥ h + 1.
Then

Pr[x|g = g1|Li+1]
Pr[x|g = g2|Li+1]

=
Pr[Li+1|x|g = g1] Pr[x|g = g2]
Pr[Li+1|x|g = g2] Pr[x|g = g1]

=
Pr[Li|x|g = g1] Pr[i+1|Li, x|g = g1]
Pr[Li|x|g = g2] Pr[i+1|Li, x|g = g2]

(Use the fact that the predicate is (h, ε)-balanced.)

≤
(1

2 + ε
1
2 − ε

)
Pr[Li|x|g = g1]
Pr[Li|x|g = g2]

.

Observe that
Pr[x|g = g1|L0]
Pr[x|g = g2|L0]

= 1.

It follows that
Pr[x|g = g1|L]
Pr[x|g = g2|L]

≤
(

1 + 2ε

1− 2ε

)|L|
.

Take g1 ∈ {0, 1}g that minimizes Pr[x|g = g1|L]. There are 2|g| possible values
for g1, so Pr[x|g = g1|L] ≤ 2−|g| ≤ 2−s|X̂|. For any x̂ ∈ {0, 1}X̂,

Pr[x|X̂ = x̂|L] ≤Pr[x|g = x̂|g|L]

=Pr[x|g = g1|L]
Pr[x|g = x̂|g|L]
Pr[x|g = g1|L]

≤ 2−s|X̂|
(1

2 + ε
1
2 − ε

)|L|
.

��

534 J. Cook et al.

3.3 Backtracking Algorithms Use Exponential Running Time on
Unsatisfiable Formulas

In Section 3.2, we showed that with high probability a myopic backtracking
algorithm will choose a partial assignment to x that cannot be extended to
satisfy f(x) = b. We now prove that once this happens, the algorithm must run
for exponential time:

Theorem 3.10. Analogous to [3, Lemma 3.9]. Let f be Goldreich’s function
for predicate P and graph G, where G is an n × n (r, d, c)-boundary expander
with right-degree d and P is h-robust with h < c/2. Fix b ∈ {0, 1}n. Let ρ be a
locally consistent partial assignment such that |V ars(ρ)| ≤ cr/4. If ρ cannot be
extended to any input x satisfying f(x) = b, then every backtracking algorithm
that makes the partial assignment ρ will run for time 2Ω(r(c−h)).

We will make use of the following lemma from [6, Corollary 3.4]. The width of
a resolution proof is the greatest width of any clause that occurs in it, and the
width of a clause is the number of variables in it.

Lemma 3.11. The size of any tree-like resolution refutation of a formula Ψ is
at least 2w−wΨ , where w is the minimal width of a resolution refutation of Ψ ,
and wΨ is the maximal width of a clause in Ψ .

Our setup and proof strategy are similar to those found in [2, Section 3] and [3].
[2] measures robustness in terms of 	, where 	 = d− h.

Proof (Theorem 3.10). Let I = Cl(ρ) and J = Γ (I). By Lemma 2.12 |I| ≤ r/2.
By Lemma 2.15, ρ can be extended to another partial assignment ρ′ on variables
xJ , such that ρ′ satisfies every equation in (f(x))I = bI . The restricted formula
(f(x) = b)|ρ′ still encodes an unsatisfiable system f ′(x) = b′. The underlying
graph G′ of f ′ is produced from G by removing every output node in I and every
input node in J . By Lemma 2.13, G′ is an (r/2, d, c/2)-boundary expander.

We can express the equation f ′(x) = b′ using a CNF formula Φ, by repre-
senting each equation (f ′(x))i = b′i by at most 2d clauses. The computation of
a backtracking algorithm as it discovers that f ′(x) = b′ is unsatisfiable can be
translated to a tree-like resolution refutation of the formula Φ, such that the size
of the refutation is the working time of the algorithm. Thus it is sufficient to
show that every tree-like resolution refutation of Φ is large.

We say a set of equations (f ′(x))I = b′I semantically implies a clause C iff
every truth assignment satisfying (f(x))I = bI also satisfies C. Following [2,
Section 3], we define the measure of C to be

μ(C) = min
I:(f ′(x))I=b′I |=C

|I|.

We omit the proofs of the following facts; similar facts are proved in [2].

1. For any D ∈ Φ, μ(D) = 1.
2. μ(∅) > r.

Goldreich’s One-Way Function Candidate 535

3. μ is subadditive: if C2 is the resolution of C0 and C1, then μ(C2) ≤ μ(C0) +
μ(C1).

4. For any clause C, if r
2 ≤ μ(C) ≤ r, then C has width at least (c/2−h)r

4 .

1, 2 and 3 together imply that any resulation proof will result in a clause C

whose width is between r
2 and r. By 4, C has width at least (c/2−h)r

4 , so by
Lemma 3.11, the resolution proof has size 2Ω(r(c−h)). ��

4 The Size of Pre-images of Goldreich’s Function

In this section we prove that Goldreich’s function has pre-images sufficiently
small for Theorem 3.1 to work.

Theorem 4.1. For every degree d, let Pd(x1, . . . , xd) = x1⊕· · ·⊕xd−2⊕(xd−1∧
xd). Choose a random graph for Goldreich’s function by connecting each output
to d inputs chosen uniformly at random (with replacement). Then

E[#(x, y) : f(x) = f(y)] = 2(1+2−Ω(d))n,

where the expectation is over the choice of graph.

Proof. For x, y ∈ {0, 1}n and i, j ∈ {0, 1}, let nij(x, y) be the number of indices k
where xk = i and yk = j. We have n00(x, y)+n01(x, y)+n10(x, y)+n11(x, y) = n.

Since the input indices to the predicate are selected uniformly at random, the
probability that a single output bit will be equal for inputs x and y is only a
function of αij

def= nij(x, y)/n. We call this function the probability of equality,
PE(α00, α01, α10, α11).

Then

E[#(x, y) : f(x) = f(y)]

=
∑

x,y∈{0,1}n

Pr[f(x) = f(y)]

=
∑

n00+n01+n10+n11=n

(
n

n00, n01, n10, n11

)
Pr[f(x) = f(y)|nij]

≤n4 max
α00+α01+α10+α11=1

(
n

nα00, nα01, nα10, nα11

)
PE(α00, α01, α10, α11)n

= max
α00+α01+α10+α11=1

(2H(α00,α01,α10,α11)PE(α00, α01, α10, α11))n(1+o(1))

where H(αij) is the base-2 entropy of the distribution defined by αij . Thus, it
suffices to show that there is a constant ε > 0 such that for sufficiently large d,

∀αij H(αij) + log2 PE(αij) ≤ 1 + 2−εd.

It can be shown that for the predicate Pd which we have defined,

PE(αij) ≤ 1 + (α00 + α11 − α01 − α10)d−2

2
.

536 J. Cook et al.

Now, let p = α00 + α11 and q = α01 + α10 = 1 − p. Forcing α00 = α11 and
α01 = α10 can only increase H(αij), so without loss of generality, we assume
α00 = α11 = p/2 and α01 = α10 = q/2, and prove

∀p ∈ [0, 1] : H(p/2, p/2, q/2, q/2)+ log2

(
1 + (p− q)d−2

2

)
≤ 1 + 2−εd,

or equivalently,

∀q ∈ [0, 1
2] : H(q) + log2(1 + (1− 2q)d−2) ≤ 1 + 2−εd.

We consider four cases for the value of q. (We will choose positive constants
ε, ε1, ε2, ε3 suitably as we go along.)

Case 1: q > ε1

H(q) + log2(1 + (1− 2q)d−2) ≤ 1 + (1 − 2ε1)d−2 log2 e ≤ 1 + 2−εd,

for ε < − log2(1− 2ε1) and sufficiently large d.

For the remaining three cases, q is small. Using the Taylor expansion of log2

around 2, we get

log2(1 + (1− 2q)d−2) ≤ 1 +
(1− 2q)d−2 − 1

2 ln 2
≤ 1 +

e−2qd − 1
2 ln 2

.

Case 2: ε1 ≥ q > ε2/d

H(q) + log2(1 + (1 − 2q)d−2) ≤ H(ε1) + 1 +
e−2ε2 − 1

2 ln 2
≤ 1

if we choose ε1 small enough that H(ε1) < 1−e−2ε2

2 ln 2 .

For the remaining two cases we fix ε2, say ε2 = 1
2 . Now, qd ≤ 1

2 , and we have
the approximation

H(q)+1+
e−2qd − 1

2 ln 2
≤ (q log2(1/q)+2q)+1− qd

2 ln 2
= q(log2(1/q)−Θ(d))+1.

Case 3: ε2/d ≥ q > 2−ε3d

For ε3 < 1
ln 2 and sufficiently large d: log2(1/q)−Θ(d) < 0.

Case 4: 2−ε3d ≥ q

For ε < ε3 and sufficiently large d: q log(1/q) ≤ ε3d2−ε3d ≤ 2−εd.
This completes our proof. ��

Goldreich’s One-Way Function Candidate 537

References

1. Achlioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-SAT. In:
FOCS, pp. 590–600 (2000)

2. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Pseudorandom
generators in propositional proof complexity. SIAM Journal on Computing 34(1),
67–88 (2004)

3. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning 35,
51–72 (2005)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. on
Computing 36(4), 845–888 (2006)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0 . In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX
2006 and RANDOM 2006. LNCS, vol. 4110, pp. 260–271. Springer, Heidelberg
(2006)

6. Ben-Sasson, Wigderson: Short proofs are narrow–resolution made simple. J. ACM:
Journal of the ACM 48 (2001)

7. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, p. 272. Springer, Heidelberg
(2001)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

9. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Goldreich, O.: Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC) 7(90) (2000)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

13. Mossel, E., Shpilka, A., Trevisan, L.: On ε-biased generators in NC0. Random
Structures and Algorithms 29(1), 56–81 (2006)

A MiniSat Experiment

Inverting Goldreich’s function can be seen as the task of solving a constraint
satisfaction problem with a planted solution. This suggests the use of a general-
purpose SAT solver to solve the constraint satisfaction problem. We performed
an experiment using MiniSat version 2.0 beta [10,9], which is one of the best
publicly available SAT solvers. We always use the degree-five predicate P5(x) =
x1⊕ x2⊕ x3 ⊕ (x4 ∧ x5). For each trial, we choose a new random graph of right-
degree 5. MiniSat requires a boolean formula in conjuctive normal form as input,
so we represent each constraint P (xj1 , xj2 , xj3 , xj4 , xj5) = vi by 16 clauses: one
for each truth assignment to xj1 , · · · , xj5 that would violate the constraint.

538 J. Cook et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180

tim
e

in
 s

ec
on

ds

n

Fig. 1. Number of seconds taken by MiniSat to invert Goldreich’s function for different
values of n. We use the degree-five predicate P5(x) = x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5) and a
random bipartite graph of right-degree five.

We ran MiniSat on a Lenovo T61 laptop with 2GB of RAM and a 2.00GHz
Intel T7300 Core Duo CPU. Fig. 1 plots the number of seconds taken to find
a solution versus the input size n. The graph is plotted on a logarithmic scale.
The time appears to grow exponentially in n.

	Goldreich’s One-Way Function Candidate and Myopic Backtracking Algorithms
	Introduction
	Preliminaries
	Goldreich's Function
	Myopic Backtracking Algorithms
	Random Predicates
	Expansion Properties
	Closure Operation

	Myopic Algorithms Use Exponential Time in the Average Case
	Clever Myopic Algorithms
	The Probability of a Correct Guess Is Small
	Backtracking Algorithms Use Exponential Running Time on Unsatisfiable Formulas

	The Size of Pre-images of Goldreich's Function
	MiniSat Experiment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

