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Today I’m presenting some joint work with Ian Mertz scheduled to appear at STOC 2020.
This talk has two parts.
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The Tree Evaluation Problem

First I’ll tell you about the Tree Evaluation Problem and why we care about it. Then I’ll show
you a new algorithm for solving it, based on an idea around borrowing memory. I’ll explain more
about that later.
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The Tree Evaluation Problem

The first part is older work mostly done by other people.
It’s based on a couple of papers from 2010 that introduced the problem.
I’ll start by defining the problem after giving some motivation explaining why we care about it.
Then I’ll talk about a couple of abstractions we use to analyse it, called branching programs
and pebbling games. And finally, before I move on the new algorithm, I’ll talk about some lower
bounds that the new algorithm had to work around.
So, let’s start with the motivation, which is separating complexity classes. I want to start by
illustrating an embarassing situation in complexity theory.



AC0(6) ⊆ L ⊆ P ⊆ NP ⊆ PH

We don’t know whether AC0(6) = PH.
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The Tree Evaluation Problem
Motivation and definition

Here’s a sequence of complexity classes. Don’t worry if you don’t know what all these are. On
the right side, we have NP followed by the whole polynomial hierarchy.
On the left, we have uniform AC zero of six. As far as we know, AC zero of six is a really weak
complexity class. For example, given a string of bits, we don’t know how to count whether most
of the bits are zero or one.
And in between these two extremes, there’s a wide range of complexity classes that I could add
to this slide that are all distinct from each other — as far as we know.
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Motivation and definition

The embarassing thing is that we still don’t have any proof that these classes aren’t all the same
as each other. Any kind of separation on this line would be a breakthrough result.
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We don’t know whether AC0(6) = PH.
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Today we’re going to look at just two of these classes, L and P. The The Tree Evaluation Problem
was introduced as an attempt to separate these two.



P = “polynomial time”: O(nO(1)) time.

L = “logarithmic space”: O(log n) memory.
2O(log n) = nO(1) configurations, so L ⊆ P.

TEP ∈ P.
Goal: prove TEP 6∈ L, so L 6= P.
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Motivation and definition

Just to make sure everyone’s on the same page, P stands for polynomial time. It’s the class
of decision problems which can be solved by a Turing machine that runs for a number of steps
that’s polynomial in n, where n is the length of the input, measured in bits.
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Motivation and definition

Our other class is L, which stands for logarithmic space. Here, the constraint is that the Turing
machine can use big oh of log n memory.
That means the Turing machine can have two to the power big oh of log n different configurations,
which is the same thing as a polynomial in n. Since we can never repeat a configuration without
looping forever, this tells us that every logspace Turing machine is a polynomial time Turing
machine, so L is a subset of P.
The Tree Evaluation Problem was introduced in an effort to prove that this inclusion is strict.
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Motivation and definition

The tree evaluation problem, which I’ll write as TEP, is easy to solve in polynomial time. But it
seems like it should be impossible to solve in log space. The hope of people who study the Tree
Evaluation Problem is to prove that it is indeed not in L, which would imply that L is not equal
to P.
So, that’s the motivation. Now let’s talk about what this problem actually is.
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The Tree Evaluation Problem

The input to the Tree Evaluation Problem is a complete binary tree with some information
attached to each node. Each leaf has a number attached to it — in this case, 3, 1, 2 and 2 —
and each internal node has a table of numbers.
Given that input, we’re going to recursively define a single number at each node, called the value
of the node.
The values of the leaves are already part of the input.
To compute the value of an internal node, we need to first know the values of its children. Those
two values tell us where to look in that internal node’s table. For the internal node on the left,
we look at the entry in row three, column one of its table, and we find the number two.
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The Tree Evaluation Problem

Similarly, we look up row two column two of the node on the right, and find the number three.



The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).



The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

The Tree Evaluation Problem
Motivation and definition

The Tree Evaluation Problem

Finally, the numbers two and three tell us where to look in the root node, and we find the number

two.



The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).



The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

The Tree Evaluation Problem
Motivation and definition

The Tree Evaluation Problem

The output of the Tree Evaluation Problem is the value at the root. To turn this into a decision

problem, we can say the output is true iff the value at the root is one.
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The Tree Evaluation Problem

There are two parameters to this problem. The first parameter is the height of the tree. Three
in this case. The second parameter is k, which is the range of the numbers at the nodes. In this
case it’s also three, meaning every number is between one and three, and the tables are all three
by three.
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The Tree Evaluation Problem

In general, the size of the input is on the order of two to the h internal nodes, times k squared
numbers stored in each node, times log k bits to store each number.
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Now that I’ve defined the Tree Evaluation Problem, I want to talk about algorithms for solving
it. I’ll start by describing branching programs, which are the computational model we’re using.
Then I’ll talk about an abstraction called a pebbling game which can be useful for both upper
and lower bounds.
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I final state: labelled with a number 1..k .

One state is the starting state.
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Branching programs and pebbling games

So, here’s our TEP input again. I’ll define a query to be any piece of that input we might want
to read.
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Specifically, a query is either a leaf, meaning we want to read the input at that leaf, or it’s a
particular cell in one of the tables in an internal node. A branching program is a directed graph,
where the nodes are called states. Each state is labelled by a query, and each edge is labelled by
the answer to a query.
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To be more precise, there are two kinds of state. A query state is labelled with a query, and has
k outgoing edges: the edge you follow depends on the answer to the query. The other kind is a
final state. When you get to one of those, the computation stops, and you output whatever the
state is labelled with. And one of the states is marked as the starting state.
As an example, let’s see a branching program that solves the tree evaluation problem when the
height and alphabet size k are both two.
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Here’s what a height two instance looks like when the alphabet size k equals 2. There are six
things we can query: the four cells in the root node A’s table, and the two leaves B and C.
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Here’s a branching program that solves it. It’s organized into layers going from left to right.
The starting state queries the first leaf, B. Depending on the answer, we end up in one of the
two states in the next layer. Those states query the other leaf C, and depending on the answer,
we end up in one of four possible states in the third layer. Each node in the third layer queries
a different cell in the root node’s table, and depending on the answer, we output 1 or 2.
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Here’s an example input. Let’s see what the computation looks like.
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Both the leaves are 2, so we end up at the node that queries A22. Then the value is 1, so we
output 1.
One thing to notice here is that every layer remembers a different set of information.
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In the second layer, we remember node B, and in the third layer, we remember both B and C.
The lower bounds we have so far all involve arguments about how many things the branching
program needs to remember at once.
One way to model this idea of remembering things is pebbling games.



Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
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Pebbling game [Paterson Hewitt 1970]

Pebbling games were first defined by Paterson and Hewitt in 1970. In the context of the Tree
Evaluation Problem, they work like this. Suppose we have a complete binary tree of height h.
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Three in this case.
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Pebbling game [Paterson Hewitt 1970]

You have some limited number of pebbles. Let’s say it’s three. They all start in your hand.
You’re allowed two kinds of move.
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Pebbling game [Paterson Hewitt 1970]

First, you can move one of your pebbles to a leaf of the tree. And second, if a node’s two
children both have pebbles on them, you can move one of your pebbles to that node. The goal
is to place a pebble on the root node.
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Let’s try.
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Pebbling game [Paterson Hewitt 1970]

We have three pebbles. We’ll start by moving two of the pebbles to the leftmost two leaves.
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Branching programs and pebbling games

Pebbling game [Paterson Hewitt 1970]

Now, the internal node on the left has pebbles on both of its children. So we’re allowed to move
a pebble to it.
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This is good progress. Our goal is to put a pebble on the root, and we’ve already got one of the
root’s two children. Now, let’s focus on the right side of the tree. I’ll move two pebbles to the
two leaves on the right.
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Pebbling game [Paterson Hewitt 1970]

Now I’m allowed to move a pebble to the right child of the root. Which pebble should I move?
Not the one that’s already on the root’s left child, because I don’t want to lose that progress
I’ve made! So, I move one of the other two pebbles to that node.
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Pebbling game [Paterson Hewitt 1970]

Now, both of the root’s children have pebbles on them, so I can move a pebble to the root.
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Pebbling game [Paterson Hewitt 1970]

And we’re done. The important question is: how many pebbles do we need? In this case we
had three pebbles, and it was enough.
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Pebbling game [Paterson Hewitt 1970]

In general, you can solve this game with h pebbles, where h is the height of the tree, using a
simple recursive algorithm. The algorithm visits each node once, so that’s two to the h minus
one steps.



Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.



Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

The Tree Evaluation Problem
Branching programs and pebbling games

Pebbling game [Paterson Hewitt 1970]

A corollary of that is that we can build a branching program that solves the tree evaluation
problem using two to the h times k to the h states. The way this works is that each step of
the game translates into a layer of our branching program, and the placement of the pebbles
determines which values the program is remembering. Since our strategy uses at most h pebbles
at a time, the program will only need to remember at most h values at once, which requires k
to the power h states in a single layer.
Now, the pebbling strategy is tight: if you only have h-1 pebbles, no sequence of legal moves
can put one on the root.
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Pebbling game [Paterson Hewitt 1970]

The proof of that is not as obvious. I’ll leave it as an exercise. Now, it would be nice if we could
make a corresponding corollary.
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Since we need at least h pebbles, maybe we can prove that the tree evaluation problem needs
at least on the order of k to the h states.
For a long time, nobody could come up with any algorithm that did better, so this conjecture
seemed quite plausible.
The algorithm I’ll present later is the first counterexample.
Now, let’s take a moment to see where we are.
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The Tree Evaluation Problem
Lower bounds

We’ve defined the tree evaluation problem and talked about branching programs and pebbling
games for solving it. Now I promised I’d talk about some lower bounds.
If you remember, the goal behind the tree evaluation problem is to separate log space from
polynomial time. So, let’s see what it would take to prove that this problem can’t be solved in
log space.
To define what log space means here, we need to measure the size of the input.



Input size: Θ(2hk2 log k).

So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.
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The Tree Evaluation Problem
Lower bounds

The input consists of a k by k table at each internal node, and a single number at each leaf. So,
the size of the input is on the order of two to the h internal nodes times k squared numbers at
each node times log k bits to store each number.
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The Tree Evaluation Problem
Lower bounds

Taking the logarithm of that means that a log space Turing machine is allowed to use on the
order of h plus log k memory.
Now, we want to understand that in terms of branching programs. For a fixed input size, any
Turing machine can be transformed into a branching program, with one node for every possible
configuration of the Turing machine.
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Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.
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The Tree Evaluation Problem
Lower bounds

That means that if TEP is in log space, then it can be solved by a family of branching programs
with two to the order of h plus log k states, which equals two to the order h times k to some
constant. I say “family” here because we need a different branching program for each input size.
So, we can restate the goal of the Tree Evaluation Problem work as: prove that it cannot be
solved by branching programs with two to the order h times k to a constant states. That would
imply it’s not in L, and so L is not equal to P.
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The Tree Evaluation Problem
Lower bounds

Now, the pebbling-based algorithm for TEP, which until now was the best known, has two to
the h layers with a varying number of states per layer ranging up to k to the h. If you add up
all the layers, it ends up working out to big theta of k plus one to the h states.
Since k is raised to more than a constant power, it is not a log space algorithm.
That false conjecture from the previous slide said that k to the h was a lower bound for all
branching programs. If that had turned out to be true, it would have meant that you can’t solve
TEP in log space.
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The Tree Evaluation Problem
Lower bounds

The new algorithm I’m going to show you has k over h plus one to the theta of h times a
polynomial in k states.
If you compare it to pebbling, it’s better as long as h is not too small compared to k. Specifically,
if h is k to a power bigger than four over five, this algorithm is an asymptotic improvement.
But, it’s still not log space.
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Lower bounds

Both of these algorithms use more than two to the order h times k to a constant states. So,
even though we’ve ruled out the conjecture that pebbling is the best possible, the door is still
open to proving TEP is not solvable in log space.
Now, I want to briefly mention some existing lower bounds for TEP, to give you an idea of why
we found this new algorithm surprising.



Lower bounds
Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.
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Lower bounds

It turns out that under some pretty reasonable-sounding assumptions, you can prove that the
pebbling algorithm is essentially the best possible.
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The Tree Evaluation Problem
Lower bounds

You can prove it if you assume the algorithm is read-once. That means that once the algorithm
reads a certain piece of the input, it is not allowed to read it again.
Another assumption we can make instead is that the algorithm is thrifty. This means that the
algorithm never reads an irrelevant piece of the input. For example, if an internal node’s left
child has value three and its right child has value 2, then it’s only allowed to read the entry at
position three two in that node’s table, since none of the other entries matter.
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The Tree Evaluation Problem
Lower bounds

The new algorithm beats this lower bound, so you can infer that it’s not read-once or thrifty.
The algorithm is actually going to read every piece of the input several times.
Okay, I’ve said a lot of mysterious things about the new algorithm, so maybe it’s time I told you
how it works.



The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP
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New algorithm

I’ll start with some techniques we use related to reversible computation, and then I’ll tell you
how we apply them to solve TEP.
I’ll start with a paper that caught our attention, and showed us we should be looking at reversible
computation.



Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.
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Catalytic space

The paper is from 2014, and it’s called Computing with a full memory: catalytic space.
The idea is that you’re given a small amount of ordinary memory to work with, and a much
larger amount of extra memory. The catch with the extra memory is that once you’re done with
your computation, you need to return it back the way it was. Imagine your friend has leant you
a hard disk that you can use, but when you’re finished, you need to give it back with the same
data it started with.
I think a natural first thought here is that this extra memory can’t possibly help. For example,
if you overwrite any data that was stored in it, you’d better keep a copy of that data somewhere
else so that you can put it back once you’re finished. So it’s hard to imagine how you could get
any net gain from it. Surprisingly, the result in the paper is that the extra memory does seem
to help.
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Catalytic space

It turns out that with only a logarithmic amount of ordinary memory but a polynomial amount
of borrowed memory, you can compute uniform T C one circuits. For example, you can compute
the determinant of a matrix in T C one, and we don’t know how to do with logarithmic memory.
We stumbled on this result when we were trying to prove a lower bound for the Tree Evaluation
Problem.
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Catalytic space

We had the following idea for a proof. First, at some point you need to compute the left child
of the root, B. Then you need to keep that in memory while you compute the right child, C.
That uses up log k bits of memory in addition to the subroutine that’s computing C. Therefore,
the argument goes, every level you add to the tree adds log k bits that your algorithm needs to
remember.
The catalytic space result effectively shows that this approach will never work. Even if we could
argue that you need to remember B while you’re computing C, this result says that the subroutine
computing C can borrow the memory being used to store B.
Actually, the history of the techniques we use goes back pretty far.
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Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
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A 1989 paper by Barrington showed that if you restrict branching programs to have just five
nodes in every layer, you can still do a lot with them. A later 1992 paper by Ben-Or and Cleve
showed how you can do a lot with register programs that only use three registers.
By the way, how many people are familiar with these results?
Both of these papers show how you can trade time for space in order to make algorithms that
use an extremely limited amount of memory.
Another thing they have in common is that they use reversible operations. The basic ingredient
we’re going to use is reversible operations on registers.



Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)
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Reversible computation

The model is that we have n inputs, x one through x n, and m work registers r one through r
m, and their values are all in some ring R.
We’re interested in reversible instructions. For example, the first instruction here adds register
four times input 1 to register five. We can reverse that instruction by subtracting instead of
adding. When you run these two instructions in sequence, it’s the same as doing nothing.
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Reversible computation

For any register rj , let’s define τj to be its initial value before our computation begins.
Now, suppose we have some function f we’re interested in computing. I’m going to define
something called cleanly computing f.
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New algorithm
Reversible computation

We’ll say a sequence of reversible instructions cleanly computes a function f into register i if,
once the computation finishes, the new value of register i is its old value plus f, and every other
register is unchanged. Note that the instructions are allowed to use these other registers, as long
as they later get restored to their original values.
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Since each instruction is reversible, we can reverse the entire sequence by running the inverses
of the original instructions in reverse order. If we do that, the result is a clean computation of
negative f.
There are two reasons we like this definition. The first is that it’s designed to help us re-use
memory, as we’ll see later. The second reason is we can translate register programs into branching
programs.
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I all other registers are unchanged (rj = τj for j 6= i)

Lemma
Suppose there is a sequence of ` instructions that cleanly computes f , and each
instruction has the form:

(r1, . . . , rm)← g(xj , r1, . . . , rm)

Then there is a branching program that computes f with `|R|m states.
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In particular, suppose we have a sequence of ` instructions that cleanly computes some function
f. The instructions are allowed to have a pretty general form. In fact, we’ll say that an instruction
can update the state of all the registers according to any function g. The only restriction is that
g is only allowed to depend on one of the inputs. This restriction comes from the fact that each
state of a branching program can only query a single piece of the input.
Then we can convert that into a branching program that uses ` times the size of the ring to
the power m states. The way we do that is that we build one layer for each instruction in the
program. Each layer has R to the m states, so that it can remember all of the register values.
The states within that layer all query input x j, and the edges to the next layer are determined
according to the function g, since at the current node, you know the values of all the other
registers.
So, our overall plan is this. We’re going to build an algorithm that solves the Tree Evaluation
Problem using a clean computation. Then we’ll use this lemma to convert it to a branching
program.
Now, let’s try some examples of clean computation.



Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

[r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]
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For our first example, suppose we want to cleanly compute x one plus x two into register one.
We can do this with two instructions: first add x one, then add x two.



Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]
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After we add x one, the value of the register is tau one plus x one.



Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:
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I ri = τi + f (x1, . . . , xn)
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And after we add x two, the value of the register is tau one plus x one plus x two.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.
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Lemma: Multiplication

For our next example, let’s say we’ve got a subroutine P one that cleanly computes a function f
1, and a subroutine P two that cleanly computes a function f 2, and our goal is to compute the
product f 1 times f 2.



Lemma: Multiplication
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Lemma: Multiplication

The program looks like this. We can think of it as being made out of two interlocking pieces.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
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Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.
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Lemma: Multiplication

The first piece is calling the subroutines P one and P two. We first call P one, then P two. Since
everything’s made out of reversible instructions, we’re then able to run P one backward and P
two backward.



Lemma: Multiplication
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Lemma: Multiplication

The other piece is adding and subtracting r one times r two. Since the subroutines are modifying
the contents of r one and r two, this has a different effect each time. So, let’s see what happens
when we run the program.
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Lemma: Multiplication

The effect of the first step is straightforward: r3 is now equal to its original value tau3 plus tau1
times tau2.



Lemma: Multiplication
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Lemma: Multiplication

After we run P1, register 1 is set to f1 plus its original value tau 1. So, the next instruction takes
away the tau1 times tau2 we added in the last step, but also subtracts f times tau two.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
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Lemma: Multiplication

Next, we run p two, so register two now has its original value plus f2.
When we add r1 times r2 to r3, we cancel out the f1 times tau2 from the last step. Instead, we
add back tau1 times tau2, and also add tau1 times f2 and f1 times f1.
f1 times f2 is our goal. So, all we have to do now is get rid of the terms we don’t want, like
tau1 times tau2 and tau1 times f2.



Lemma: Multiplication
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Lemma: Multiplication

We restore register one to its original value by running P1 backward. Then when we subtract r1
times r2, which neatly removes the tau1 times tau1 and tau1 times f2 terms from register three.



Lemma: Multiplication
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Lemma: Multiplication

All that’s left to do is to run P2 backward, so that registers 1 and 2 are restored to their original
values.
Register three now holds its original value plus f1 times f2, and the other registers have been
restored. That means we’re done.



Lemma: Multiplication
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Lemma: Multiplication

Now, we’ve computed f1 times f2, but what did it cost us? Well, we had to call four subroutines:
P1 and P2 forward and backward. But, this algorithm is extremely efficient with memory. Notice
that P1 and P2 can each use all of our memory. There is absolutely no memory that needs to
be set aside for the parent routine’s exclusive use. In the talk title, I mentioned “borrowing”
memory. This is what I mean by that.
Now let’s talk about how to apply these techniques to solving the Tree Evaluation Problem.
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We want to build a reversible computation to compute the value at the root node of the tree.
In order to do that, it will be helpful to have an algebraic formula for that root value.



A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y ] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :
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[v = 1] =

[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]



A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y ] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

New algorithm
Solving TEP

A formula for TEP

From here on, our ring will be the integers mod two. I’ll introduce some notation: the indicator
brackets x equals y is one if they are equal and otherwise zero.
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A formula for TEP

Now, suppose we have some node v with two children, ` and r, and this is the table at that
node. Let’s try to build a formula for the indicater v equals one.
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A formula for TEP

Well, there are three ways that node v can be equal to one, corresponding to the three one
entries in the table. We can turn this into a formula with three terms, corresponding to these
entries.
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A formula for TEP

The terms say: either ` equals 2 and r equals 1, or ` equals 2 and r equals 2, or ` equals 1 and
r equals 3.
Now let’s write the general formula.
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A formula for TEP

Let’s say f v is the table of values at node v.
We take the sum over all possible values y and z for the two children. Inside the sum, we check
node v’s table to see whether each term should be included. We multiply that by the indicators
` equals y and r equals z.
With that formula in hand, let’s try to build a recursive algorithm.



First attempt

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x ]

I If v is a leaf:
I ri ← ri + [v = x ] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x ]× [` = y ]× [r = z ]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.
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First attempt

I’ve left our formula at the top of the slide for reference.
Our algorithm will be parameterized by a node v, a value x, and some target register i. The goal
is to test whether v is equal to x. If they’re equal, we flip the bit in register i.
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First attempt

If v is a leaf node, then the value of v is directly available as part of the input. So, we can do
this in just one instruction.
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First attempt

If v is an internal node, then we compute this formula by looping over all k squared possible
values for y and z. In each case, the value we need to add depends on the product of the
indicators ` equals y and r equals z. Using the technique I showed earlier for multiplication, this
can be accomplished with four total recursive calls.
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First attempt

We set aside two other registers j and j ′ for the outputs of the recursive calls to CheckNode,
because the multiplication algorithm needs that. That means we need a total of three registers:
i, j and j ′. Since we’re using clean computations, the calls to the subroutine are free to use those
same three registers.
[You might be concerned that our product actually has three terms. But the third term, f v of
y z equals x, doesn’t cost us anything, since it’s directly available in the input.]
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First attempt

If we convert this to a branching program, those three one-bit registers translate to eight states
in each layer. The length of the program is k squared to the power h minus one, since at every
level, we make k squared recursive calls.
This isn’t very good.
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First attempt

Our original pebbling algorithm just uses k plus one to the h states. So, we’ll need another trick
if we’re going to beat it.
Let’s take a closer look at what’s going on in this for loop.



I for (y , z) ∈ [k]2:
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Each iteration of the for loop is using the multiplication lemma to combine the indicators `
equals y and r equals z.
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If you remember the multiplication lemma, it looks kind of like this. We make four calls to our
subroutines for checking ` and r, and in between those four calls, we update our final output
register r i. I’ve coloured the recursive calls in blue.
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The for loop just means we do this whole thing over and over again, k squared times.
It turns out we can completely parallelize this. All of the instructions on the first row can be run
at the same time, with one recursive call that checks all of the possible values for the left child.
We can do similar things for the other lines.
Instead of three registers, we’re going to end up needing 3 times k registers, since we’re dealing
with k possible values for the left child, k possible values for the right child, and, to complete
the recursion, we’ll need to provide k different output values as well.
We can think of the output of the subroutine as computing a k-bit string, where exactly one of
the bits is one and the others are zero. We call this a one-hot encoding.



One-hot encoding

Given a value x ∈ [k], define OneHot(x) = ([x = 1], [x = 2], . . . , [x = k]) ∈ {0, 1}k .

E.g. for k = 3, OneHot(2) = (0, 1, 0).
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One-hot encoding

In other words, the one-hot encoding of x is a vector consisting of the indicators x equals 1
through x equals k. For example, when k is three, the one-hot encoding of 2 is zero one zero.
So, let’s see an algorithm to compute this.



Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)

I If v is a leaf:
I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× (~rj)y × (~rj ′)z

Note:

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.
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For this algorithm, the registers will store vectors of k bits each.
The algorithm is parameterized by a node v and a target register for the output. The goal is to
flip exactly one bit of that register, where the index of the flipped bit is the value v .
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If v is a leaf node, then we can still do this in one instruction, since the branching program has
direct access to the leaf value.
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When v is an internal node, we run our multiplication algorithm. As usual, this requires four
recursive calls, except this time, each call is cleanly computing a k-bit vector of values. I’ve
again marked the recursive calls in blue.
Just like before, the recursive calls can make full use of all of the registers, as long as they restore
them when they’re done. So, this whole algorithm only uses a total of three vector registers, for
a total of three k bits of memory.
In between the recursive calls, we do some operations to mix together the results of the recursive
calls. In the multiplication lemma, this would involve adding and subtracting the product r j
times r j prime. Here, instead, we add and subtract some function capital F.
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Our definition of capital F goes back to the original formula we computed for the indicator v
equals x. To compute coordinate number x of that function, we take our original formula, and
replace the indicator ` equals y with the y-th coordinate of register j, and the indicator r equals
z with the z-th coordinate of register j prime. The net effect is that we are computing all of the
products in this formula in parallel.
Now, if we turn this into a branching program, how many states does it use?
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We have three k-bit registers, so our branching program will have width two to the three k. We
make four recursive calls at each level, for a total of four to the h minus one. We need to do
on the order of k squared work to compute the function captial F, so the total length is order k
squared four to the h. Putting it all together, we get two to the big theta of k plus h states.
Let’s compare that to the original pebbling algorithm.



Pebbling algorithm: Θ((k + 1)h)

= Θ(2h log2(k+1))

ComputeOneHot: 2Θ(k+h) states.

Better when h log(k + 1) >> k + h, i.e. when

h >>
k

log k
.

Can we do better?
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The Pebbling algorithm uses on the order of k plus one to the h states. This new algorithm uses
two to the order k plus h states.
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We can write k plus one to the h as two to the h log k plus one. So, the one-hot algorithm
is better when h log k plus one grows faster than k plus h. In other words, when the height h
grows faster than k over log k.
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Of course the next question is: can we improve on this?
The answer is yes, but it will take us a couple of steps to get there.
The problem with the one-hot algorithm is that its encoding is really inefficient. We’re using k
bits of memory to store something that could be stored in log k bits. So, let’s see what happens
if we switch to a binary encoding.



Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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Bin(v)1 = [v = 2] + [v = 3] =
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+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).



Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

New algorithm
Solving TEP

Binary encoding

The binary encoding produces a vector of length ceiling of log k. For example, when k is 3, the
binary encoding of 1 is zero one.
The starting point for our one-hot algorithm was a formula for computing one bit of the one-hot
encoding of the root node, based on the one-hot encodings of its children. Let’s try to do the
same thing here.



Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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Binary encoding

Let’s say our root node has this table in it, and we’re trying to compute the twos bit of its binary
encoding, based on the values of its children ` and r. The twos bit is one when v is equal to two
or three.



Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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There are three entries in the table where 2 and 3 appear. We can turn this into a formula, just
like before.
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E.g. for k = 3, Bin(1) = (0, 1).
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Our formula has three terms, corresponding to these three locations: either ` and r equal 1, or
` equals 1 and r equals 2, or ` equals 2 and r equals 3.
This formula is written in terms of indicators. If we’re going to apply this recursively, we need
to rewrite the formula in terms of the binary encoding.
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Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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` is equal to one when the first bit of its binary encoding is zero and the second bit is one. We
can write this as: one plus the first bit times the second bit. Remember that we’re working mod
two, so one plus flips the bit.
Now, let’s go back and expand the whole original formula this way.
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Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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We get a sum of three terms, and each term is a product of four different bits. Some of the bits
are negated by taking one minus the bit.
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Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).
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In general, any bit of the binary encoding can be computed using a polynomial with degree two
log k involving the bits of ` and r.
Our multiplication lemma from earlier can only handle two inputs at a time. Since the polynomial
has degree more than two, we’re going to need to upgrade our lemma.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

I P−1
2

[r1 = τ1, r2 = τ2]

I r3 ← r3 + r1 × r2
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Lemma: Multiplication

Here’s our original lemma. Remember, we assume we have subroutines P1 and P2 that cleanly
compute functions f1 and f2.
The way the program worked was by alternating between P1 and P2, and doing some fiddling
in between each step.
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Lemma: Multiplication

The important thing is that after every subroutine call, we have a different combination loaded
into registers r1 and r2. r1 can either be tau1 or tau1 plus f1, and r2 can either be tau2 or tau2
plus r2, and all four combinations appear.
Generalizing this is going to involve a loop over all subsets.



Lemma: d-ary multiplication

Suppose we have d values f1, . . . , fd , and a general subroutine P. For any S ⊆ [d ],
P(S) cleanly computes ri ← ri + fi for every i ∈ S , and leaves rj alone for j 6∈ S .
Then we can cleanly compute f1 × · · · × fd into rd+1 as follows:

I For every subset S ⊆ [d ]:
I Call P(S ′), choosing S ′ so that ri = τi for i 6∈ S , and ri = τi + fi for i ∈ S .
I rd+1 ← rd+1 + cS ×

∏d
i=1 ri

I Call P once more to ensure ri = τi for i = 1, . . . , d .

Uses d + 1 registers and 2d recursive calls.
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Lemma: d-ary multiplication

So, here’s the setup. We have d values f1 through fd. We have a subroutine P that can compute
any combination of them. For any set S, P of S cleanly computes fi into register i for all i in S,
and doesn’t touch the remaining registers.
Given that, we can cleanly compute the product of all the fs into register d plus one like this.
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Lemma: d-ary multiplication

We loop through all possible sets of values. For each set S, we set up the registers r1 through
rd so that register i either has its original value or its original value plus f i, depending on the set
S. We can do this by crafting a set S ′ which lists all of the registers we want to toggle between
holding their original value and original value plus f i.
Then we add the product of registers 1 through d, times a carefully crafted constant c sub S.
After we’ve done this for every possible subset, we call P one last time to restore the registers
r1 through r d to their original values, in order to make this a clean computation.
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Lemma: d-ary multiplication

This algorithm uses d plus 1 registers and two to the d recursive calls.
Let’s try using it in an algorithm. Notice that the subroutine is expected to be able to compute
any subset S of the bits 1 through k. So, S should be a parameter for our algorithm.



Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S

I If v is a leaf:
I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri )b ← (~ri )b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.
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The binary algorithm uses registers that each store log k bits.
As before, it’s parameterized by a node v and a target register for the output, but now we’ve
added the set S, telling us which bits should be computed.
The goal is to flip all of the bits that are in S and correspond to ones in the binary encoding of v.
For example, if v is zero, or if the set S is empty, then this subroutine should make no changes
at all.



Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri )b ← (~ri )b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.
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As before, if v is a leaf node, one instruction is enough.
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When v is an internal node, we run our d-ary multiplication algorithm in parallel for all of the
bits b in S.
That means we loop through all possible subsets T1 and T2 of the log k bits.
After each call, we update our output registers according to some function F. I don’t have F on
the slide, but it’s a big polynomial that relates the binary encoding of v to the binary encodings
of its children.
Now, if we turn this into a branching program, let’s figure out how many states it uses.
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Our algorithm uses three log k bits of memory. It loops over two to the power two log k different
pairs of subsets, and makes two recursive calls for each one, which works out to 2 k squared
recursive calls.
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That works out to a width of k cubed states in each layer, and a length of 2k to the two h for h
levels of recursive calls, times k to some constant power representing the work done to compute
the function capital F.
Overall, that works out to on the order of k to the two h plus a constant states.
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Well, that means we’re back to having an algorithm that’s strictly worse than pebbling, which
only uses k to the h states.
But this algorithm wasn’t a waste of time. It turns out we can combine it with the one-hot
algorithm to make a sort of hybrid that interpolates between both of them.
Let’s take a step back and look at the algorithms we have so far.



algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).
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Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

New algorithm
Solving TEP

Here are the two algorithms I’ve presented. In this table, width means the number of states in
each layer of a branching program, and length is the number of layers.
The one-hot algorithm is very wide, but not too long. The one-hot encodings take up a lot of
space, but we only need four recursive calls per layer.
The binary algorithm is the opposite. Its width is quite small, only k cubed. But it loses out on
length, since it makes 2 k squared recursive calls at each layer.
The next algorithm I’ll show you will combine these two.
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New algorithm
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We get to choose a parameter a. Let’s see what happens if we choose large or small values for
a.
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If we set a to be equal to one, then the width just becomes two to the theta k, and the length
becomes two to the theta h times k to a constant. So, it’s like the one-hot algorithm.
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If we set a to the largest value, log k plus one, then the width shrinks down to k to a constant,
and the length increases to two to the theta of h log k, which is k to the theta h. So, it becomes
just like the binary algorithm.
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If we choose the parameter a carefully, we can get a good middle ground. If you look at the

right-most column, it works out to k over h plus 1 to the power five h times k to a constant

states.
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For comparison, the pebbling algorithm uses theta of k plus one to the h states.
It beats the pebbling algorithm when h grows faster than k to the four over five.
So, how does the hybrid algorithm work? Well, it’s based on an encoding that combines the
one-hot and binary encodings.



Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011

Each bit of Hybrida(v) is a degree-2a polynomial in Hybrida(`) and Hybrida(r).
Using this, we can build an algorithm that uses 3 registers with ka

2a−1 bits each and

makes 2Θ(a) recursive calls at each level, for a total of 2Θ(ah)kΘ(1) layers.
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Hybrid algorithm

The hybrid encoding is broken up into a number of blocks that are a bits long, where a is some
parameter. It’s easiest to show this with an example.
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Hybrid algorithm

When k is nine and a is two, here are the encodings of one through nine.
The encodings of 1, 2 and 3 use the first block, and leave the others at zero.
The encodings of four, five and six use only the second block. Seven, eight and nine use the last
block.
Now, once we have the encoding, the next step is to see how to compute the encoding of a
node’s value based on the children’s values.



Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011
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Hybrid algorithm

We can compute the hybrid encoding of a node using a degree-2a polynomial applied to the
encodings of its children.
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Hybrid algorithm

We can follow the same pattern we used for the one-hot and binary algorithms to turn this
encoding into another algorithm. When everything’s put together, the algorithm uses three
vector registers with k a over two to the a minus one bits each. It makes two to the theta a
recursive calls and does k to a constant power work, for a total length of two to the theta of a
h times k to a constant.
So, that concludes the algorithms I wanted to present.



Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)



Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

2
0
2
0
-0
4
-1
7

Borrowing memory that’s being used: catalytic approaches to the Tree
Evaluation Problem

New algorithm
Solving TEP

Future work

There are two basic directions for future work.
The first is to improve the algorithm. The main limiting factor seems to be computing products.
The number of recursive calls we have to make at each level is exponential in the degree of the
polynomial we’re computing. It would be nice to be able to improve that. We’re not the first to
point out this direction.
The other direction is to go back to proving lower bounds for the tree evaluation problem. If you
remember, I briefly mentioned that we have lower bounds for two restricted classes of algorithm.
The first is read-once algorithms, which are never allowed to read the same part of the input
twice. The second is thrifty algorithms, which never read an irrelevant piece of the input. Our
new algorithms violate both of those restrictions: we read every single part of the input, whether
it’s relevent or not, and we do it over and over again, using repeated computation to save
memory.


	The Tree Evaluation Problem
	Motivation and definition
	Branching programs and pebbling games
	Lower bounds

	New algorithm
	Reversible computation
	Solving TEP


