Borrowing memory that's being used: catalytic approaches to
the Tree Evaluation Problem

James Cook, lan Mertz

April 6, 2020

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Section 1

The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

AC’(6)cLCP

AC’(6) CL C P CNPCPH

We don't know whether AC%(6) = PH.

AC’(6) CL C P C NP CPH

We don't know whether AC%(6) = PH.

P = “polynomial time": O(no(l)) time.

P = “polynomial time": O(no(l)) time.

L = “logarithmic space”: O(log n) memory.
20(logn) — O(1) configurations, so L C P.

P = “polynomial time": O(no(l)) time.

L = “logarithmic space”: O(log n) memory.
20(logn) — O(1) configurations, so L C P.

TEP € P.
Goal: prove TEP ¢ L, so L # P.

The Tree Evaluation Problem

Branching programs and pebbling games

A query is either a~ leaf or a cell in a table of an internal node.

A query is either a~ leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:
» query state: labelled with a query and has k outgoing edges labelled with the
possible answers.
» final state: labelled with a number 1..k.

One state is the starting state.

©
o

/

A22

start

A21

output: 2

Al2

sy

All

output: 1

A22 ﬁ\}
output: 2

A21

Al2

output: 1
AL

}
}

start

a1 2
o4

B c 2 2
2
= A22 ﬁ\} .
5 C _— output: 2
e 1]A21
start B
* 2 |AL2 _
C —] output: 1
AL

& %
3

B c 2
2 | A22 ﬁ\}
5 C output: 2
e 1]A21
start B
* } Al12 .
C — | output: 1
A

remember B remember B, C

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

A

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

[

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a

/ \ / \ pebble to that node.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a

pebble to that node.
/ \ / \ Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
\ pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
\ pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

. » If a node’s two children have pebbles, move a
pebble to that node.
\ Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

. » If a node’s two children have pebbles, move a
pebble to that node.
\ Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

. . » If a node’s two children have pebbles, move a
pebble to that node.
\ Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2" — 1 steps are enough.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2" — 1 steps are enough.
Corollary: A branching program with 2"k" states can solve TEP.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

» If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2" — 1 steps are enough.
Corollary: A branching program with 2k" states can solve TEP.

Theorem: h pebbles are needed.

Pebbling game [Paterson Hewitt 1970]

. Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

. » If a node’s two children have pebbles, move a
\ pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2" — 1 steps are enough.
Corollary: A branching program with 2k" states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Q(k") states.

The Tree Evaluation Problem

Lower bounds

Input size: ©(2"k? log k).

X
G
S
o N\
S ORRC 00
SN SON

3 1 2

N

Input size: ©(2"k? log k). So, log space = O(h + log k) memory.

X
G
S
o N\
S ORI 00
SN SN

3 1 2

Input size: ©(2"k? log k). So, log space = O(h + log k) memory.

If TEP € L, then it can be solved by a family of branching programs with
20(htlogk) — »0(h) | O(1) states.

Input size: ©(2"k? log k). So, log space = O(h + log k) memory.

If TEP € L, then it can be solved by a family of branching programs with
20(h+|og k) — 2O(h)kO(1) states.
Pebbling algorithm (previous best):

» 2/ |ayers.

» Up to k" states per layer.

» Total O((k + 1)") states.

Input size: ©(2"k? log k). So, log space = O(h + log k) memory.

If TEP € L, then it can be solved by a family of branching programs with
2O(h+|og k) — 20(h)k0(1) states.
Pebbling algorithm (previous best):

> 2 layers.

> Up to k" states per layer.

> Total O((k + 1)") states.

New algorithm: (& + 1)®(Mk®() states. (Beats pebbling when h > k*/5+<))

Input size: ©(2"k? log k). So, log space = O(h + log k) memory.
If TEP € L, then it can be solved by a family of branching programs with
20(htlogk) — »0(h) | O(1) states.

Pebbling algorithm (previous best):
> 2 layers.
> Up to k" states per layer.
» Total ©((k + 1)") states.

New algorithm: (£ + 1)®(Mk®() states. (Beats pebbling when h > k*/5+<))

Neither algorithm fits in 20(" kO(1) states, so TEP ¢ L is still possible.

Lower bounds
Solving TEP requires Q(k") states (like the pebbling algorithm) if you assume. . .

Lower bounds
Solving TEP requires Q(k") states (like the pebbling algorithm) if you assume. . .

» the algorithm is read-once

Lower bounds
Solving TEP requires Q(k") states (like the pebbling algorithm) if you assume. . .

» the algorithm is read-once

» or the algorithm is thrifty: never reads an irrelevent piece of the input.

&
&R

Lower bounds
Solving TEP requires Q(k") states (like the pebbling algorithm) if you assume. . .

» the algorithm is read-once

» or the algorithm is thrifty: never reads an irrelevent piece of the input.

New algorithm: (X + 1)®(Mk®Q) ¢ Q(kh).

New algorithm
Reversible computation
Solving TEP

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:
» Small ordinary memory

» Large memory that must be returned to its original state

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:
» Small ordinary memory
» Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and n®(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, ...

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

» Small ordinary memory

» Large memory that must be returned to its original state
Result: with O(log n) ordinary memory and n®(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, ...

This rules out the following lower bound argument:
B/ \C » At some point, you need to compute B.
» You need to remember B (log k bits) while computing C.

» So, every level of the tree adds log k bits you need to
remember.

Bounded-width polynomial-size branching programs recognize exactly those languages
in NC. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]

Ring R
Inputs x1,...,xs € R
Work registers r,...,rm € R
Reversible instructions:
» Example: r5 < 5+ ry X x1.

P Inverse is r5 < r5s — rg X X1.

Ring R
Inputs x1,...,xs € R
Work registers r,...,rm € R
Reversible instructions:
» Example: r5 < 5+ ry X x1.
P Inverse is r5 < r5s — rg X X1.

Notation: 7; denotes the starting value of register r;.

Ring R

Inputs x1,...,xs € R

Work registers r,...,rm € R

Reversible instructions:
» Example: r5 < 5+ ry X x1.
P Inverse is r5 < r5s — rg X X1.

Notation: 7; denotes the starting value of register r;.

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T1+ f(Xl,...,X,,)

» all other registers are unchanged (r; = 7; for j # i)

Ring R

Inputs x1,...,xs € R

Work registers ry,...,rm € R

Reversible instructions:
» Example: r5 < 5+ ry X x1.
P Inverse is r5 < r5s — rg X X1.

Notation: 7; denotes the starting value of register r;.

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T1+ f(Xl,...,X,,)

» all other registers are unchanged (r; = 7; for j # i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes —f.)

Definition
A sequence of reversible instructions cleanly computes f into r; if, once it finishes:

> =1+ f(x1,...,xpn)
> all other registers are unchanged (r; = 7; for j # i)

Lemma
Suppose there is a sequence of { instructions that cleanly computes f, and each

instruction has the form:
(..., rm) < g(xj,ri,....rm)

Then there is a branching program that computes f with £|R|™ states.

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T+ f(Xl,...,X,,)
» all other registers are unchanged (r; = 7; for j # i)

Example

Cleanly compute x; + x» into r:
> < n+x
> < n+x

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T+ f(Xl,...,X,,)
» all other registers are unchanged (r; = 7; for j # i)

Example

Cleanly compute x; + x» into r:
> n+<n+x [r1:n+x1]
> < n+x

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T+ f(Xl,...,X,,)
» all other registers are unchanged (r; = 7; for j # i)

Example
Cleanly compute x; + x» into r:
> <+ n+x [n =7+ x1]
> n+nt+x [r1271+X1+X2]

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn
Py
3 <—rn—nxnn
P>
rR4—mn+rmnxnmn
Pt
< rmn—mnxXnmn
Pyt

vVvVvvyVvVvVvyYyy

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn
P1
3 <—rn—nxnn
P>
R<<mnr+mrnXxXn
P!
< rmn—mnxXnmn
P!

vVvVvvyVvVvVvyYyy

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> 3 nrt+rnxn
P1
r3<—mn—mnxXnmn
P>
R mnr+rnxXn
Pt
r<—mn—nxXnmn
Pyt

vVvVvvyVvVvVvyYyy

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn [r3:7'3+7'1><7-2]
> P

> r3i—rn—nxXn

> P,

> r3i—nrn+nxn

> Pt

> r3i—rn—rnxn

> Pyt

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn [r3:7'3+7'1><7-2]
> P [n =711+ f,n="]
>r3+r3—r1><r2 [r3:7'3—f1><7'2]
> P,

> n<—nt+nxn

> Pt

> r3i—rn—rnxn

> Pyt

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [=13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [=73 —f X 7]

> P [n=71+f,n="+Hh]

> R nt+tnxn [m=m3+T1 XT+71 X h+Ff X0
> Pt

> r3nR—nxn

> Pyt

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [=13+ 71 X 1]

> P [n=m+f,rn=r"]

> <n—nxn [=73 —f X 7]

> P [n=m+f,n="m+0]

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Py [n=T11,n="2+1)]

> r3<—rn—rnxn [r3:7'3—|—f1><f2]

> Pyt

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3rntrnxn [=13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [=73 —f X 7]

> P [n=71+f,n="m+Hh)

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Pt [n="1,n="m+10]

> r3<—rn—rnxn [r3:7'3+f1><f2]

> P{l [n =71, =m)]

Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [=13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [=73 —f X 7]

> P [n=71+f,n="m+Hh)

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Pt [n=71,n="+0f)

> r3<—rn—rnxn [r3:7'3+f1><f2]

> P;l [r1:7-1,r2:7'2]

Cost: need to run P; and P, twice each. But: no memory needs to be reserved.

New algorithm

Solving TEP

A formula for TEP
Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.

A formula for TEP

Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

A formula for TEP

Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

A formula for TEP

Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

[v=1]=
[0 =2]x[r=1]+[(=2]x[r=2]+[(=1]x[r = 3]

A formula for TEP

Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

[v=1]=
[=2]x[r=1]4+[(=2]x[r=2]+[¢ =1]x[r = 3]

Let f, denote v's table. In general,

v=xl= > [fn2)=xx[=y]x[r=2]

(y,2)€lk]?

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v,2)€lk]?
Algorithm

CheckNode(v, x, i)

Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:

» ri < ri + [v = x] is one instruction.

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:
» ri < ri + [v = x] is one instruction.
> else: for (y,z) € [K]*:
> i ri+[f(y,z)=x]x[l=y] x[r=2]
using multiplication lemma: 2 calls each to CheckNode(¢, y,) and
CheckNode(r, z,), where j and j are two registers other than /.

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:
» ri < ri + [v = x] is one instruction.
> else: for (y,z) € [K]*:
> i ri+[f(y,z)=x]x[l=y] x[r=2]
using multiplication lemma: 2 calls each to CheckNode(¢, y,) and
CheckNode(r, z,), where j and j are two registers other than /.

Needs three registers.

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:
» ri < ri + [v = x] is one instruction.
> else: for (y,z) € [K]*:
> i ri+[f(y,z)=x]x[l=y] x[r=2]
using multiplication lemma: 2 calls each to CheckNode(¢, y,) and
CheckNode(r, z,), where j and j are two registers other than /.

Needs three registers. Gives branching program with width 8 and length (k).

First attempt

v=x=) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:
» ri < ri + [v = x] is one instruction.
> else: for (y,z) € [K]*:
> i ri+[f(y,z)=x]x[l=y] x[r=2]
using multiplication lemma: 2 calls each to CheckNode(¢, y,) and
CheckNode(r, z,), where j and j are two registers other than /.

Needs three registers. Gives branching program with width 8 and length (k).
Worse than pebbling, which uses ©((k + 1)") states.

> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]

> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]

et lE=1]
fi&=ri—r Xy
rjp < rpp+[r =1]
fi<=ri+rp X rj
rjr—[t=1]
ri 4 ri—r; X ry
rip < ryp —[r=1]

fi<—=ri+rpXrp

> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]

et lE=1]
fi&=ri—r Xy
rjp < rpp+[r =1]
fi<=ri+rp X rj
rjr—[t=1]
ri 4 ri—r; X ry
rip < ryp —[r=1]

fi<—=ri+rpXrp

rjr+0=1]
ri&=ri—rjXrj
rir < rpp +[r=2]
fi<=ri+r X rj
rjpe = =1]
ri 4= ri—r; X rjs
rjp < rjp — [r =2]

ri <= ri+rXrp

<+ lE=1]
i <=1 —rj X rjs
rj <= ry + [r = 3]
fi = ri+r X rj
rjr—[0=1]
ri4—ri— 1 X rps
rj < ry —[r=73]

fi<—=ri+rpXrjp

One-hot encoding

Given a value x € [k], define OneHot(x) = ([x = 1], [x = 2],..., [x = k]) € {0, 1}*.
E.g. for k =3, OneHot(2) = (0, 1,0).

Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)

Algorithm
ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)
> If vis a leaf:

» i < Fi + OneHot(v) is one instruction.

Algorithm
ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)
> If v is a leaf:
» i < Fi + OneHot(v) is one instruction.

v
@
0
D

VYVYVYVVVV

fi i+ F(F,)
r; rj + OneHot(¢)
rj» < rj» + OneHot(r)
e 1 F (G)

fj < r; — OneHot(¢)
rj7 < rj» — OneHot(r)

Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)

> If vis a leaf:

>

v
@
0
D

YYVYVYVYVYVYYQ

Fi < Fi + OneHot(v) is one instruction.

Fi 7+ F(7, 1) F(G,5)x= D [fly,2) =x] x (F)y x (7):
rj «= rj + OneHot(() (v.2)€lK]?

ri < 1 = F(rj, 177)

rj» < rj» + OneHot(r)

i< 1+ F(rj, r7) Note:

fj < r; — OneHot(¢)

Fi 7 — F(7,17) v=xI= > [fr2)=xIxl=ylx[r=1]
rj7 < rj» — OneHot(r) (v,2)€[K]?

Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)

> If vis a leaf:

>

v
@
0
D

YYVVYVYVYVY]

Fi < Fi + OneHot(v) is one instruction.

Fi 7+ F(7, 1) F(G,5)x= D [fly,2) =x] x (F)y x (7):
rj «= rj + OneHot(() (v.2)€lK]?

ri < 1 = F(rj, 177)

rj» < rj» + OneHot(r)

i< 1+ F(rj, r7) Note:

fj < r; — OneHot(¢)

Fi 7 — F(7,17) v=xI= > [fr2)=xIxl=ylx[r=1]
rj7 < rj» — OneHot(r) (v,2)€[K]?

Gives branching program with width 23k, length ©(k%4"). Total 20(k+h) states.

Pebbling algorithm: ©((k + 1)")
ComputeOneHot: 29(k+h) states.

Pebbling algorithm: ©((k + 1)) = ©(2hloga(k+1))
ComputeOneHot: 29(k+h) states. Better when hlog(k + 1) >> k -+ h, i.e. when

Pebbling algorithm: ©((k + 1)) = ©(2hlog(k+1))
ComputeOneHot: 20(k+h) states. Better when hlog(k + 1) >> k + h, i.e. when

Can we do better?

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=
[=1]x[r=1]4+[¢(=1]x[r=2]+[¢ =2] x[r =3]

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=
[(=1]x[r=1]+[(=1]x[r=2]+[¢ = 2] x[r = 3]

[= 1] = (1 + Bin(£)1) x Bin(£),

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=
[=1]x[r=1]4+[=1]x[r=2]+[¢ =2]x[r = 3]
= (1 + Bin(¢)1) x Bin(£)2 x (14 Bin(r)1) x Bin(r)»
+(1 + Bin(¢)1) x Bin(¢)2 x Bin(r)1 x (1 + Bin(r)2)
+ Bin(¢)1 x (14 Bin(¢)2) x Bin(r)1 x Bin(r)2

[= 1] = (1 + Bin(£)1) x Bin(£)2

Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=
[=1]x[r=1]4+[=1]x[r=2]+[¢ =2]x[r = 3]
= (14 Bin(¢)1) x Bin(¢)2 x (1 + Bin(r)1) x Bin(r)2
+(1 4 Bin(¢)1) x Bin(£)2 x Bin(r)1 x (1 4 Bin(r)z)
+ Bin(¢)1 x (14 Bin(¢)2) x Bin(r)1 x Bin(r)2

[= 1] = (1 + Bin(£)1) x Bin(£)2

In general, Bin(v)x can be written as a degree-2[log k| polynomial involving Bin(¢)
and Bin(r).

Lemma: Multiplication

Suppose P; cleanly computes f; into r; and P, cleanly computes f into r». Then we
can cleanly compute f; X f; into r3 as follows:

> Py
> r3<—mn—nxXnmn
> P
> r3i—rn+nXxXn
> Pt
> r3i—rn—nXxXn
> Pyt
> r3i—rn+nxn

Lemma: Multiplication

Suppose P; cleanly computes f; into r; and P, cleanly computes f into r». Then we
can cleanly compute f; X f; into r3 as follows:

> P [n=m+f,rn=m]
r3<—rn—nrn XxXnmn

P, [n=m+f,nr=m+0h]
rR<rn+rmnxn

-1

Py [n="11,n="m+0f]
r3<—mn—nXxXnmn

'Dz_1 [f12717f2:T2]

vVvvyVvVvVvyyypy

R<mr+nxXnmn

Lemma: d-ary multiplication

Suppose we have d values fi, ..., fy, and a general subroutine P. For any S C [d],
P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:

Lemma: d-ary multiplication

Suppose we have d values fi, ..., fy, and a general subroutine P. For any S C [d],
P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:

» For every subset S C [d]:
» Call P(S’), choosing S" so that r; =7, for i ¢ S, and r; =7, + f; for i € S.
> rgp1 4 rge1+cs X H?:1 g

» Call P once moretoensure r; =71, fori=1,...,d.

Lemma: d-ary multiplication

Suppose we have d values fi, ..., fy, and a general subroutine P. For any S C [d],
P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:

» For every subset S C [d]:
» Call P(S’), choosing S" so that r; =7, for i ¢ S, and r; =7, + f; for i € S.
> rgp1 4 rge1+cs X H?:1 g

» Call P once moretoensure r; =71, fori=1,...,d.

Uses d + 1 registers and 29 recursive calls.

Algorithm

ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S

Algorithm
ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S

> If v is a leaf:

» i < fi + ComputeBin(v) is one instruction.

Algorithm
ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S
> If v is a leaf:
» i < fi + ComputeBin(v) is one instruction.
> else:
» for all subsets Ty, T C [log k]:

> Call ComputeBin(¢, T{,j) and ComputeBin(r, T3,;’).
> forall be S, (ri)p < (7)p + F(7,1}7)

Algorithm
ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S
> If v is a leaf:
» i < fi + ComputeBin(v) is one instruction.
> else:
» for all subsets Ty, T C [log k]:

> Call ComputeBin(¢, T{,j) and ComputeBin(r, T3,;’).
> forall be S, (ri)p < (7)p + F(7,1}7)

ComputeBin uses 3 log k bits of memory and makes 2 x 2298k = 242 recursive calls.

Algorithm
ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S
> If v is a leaf:
» i < fi + ComputeBin(v) is one instruction.
> else:
» for all subsets Ty, T C [log k]:

> Call ComputeBin(¢, T{,j) and ComputeBin(r, T3,;’).
> forall be S, (ri)p < (7)p + F(7,1}7)

ComputeBin uses 3log k bits of memory and makes 2 x 2298k = 242 recursive calls.
It gives branching program with width 23198k = k3 and length ©((2k)?"k°(1). Total
O(k?+0(1)) states.

Algorithm
ComputeBin(v, S,) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S
> If v is a leaf:
» i < fi + ComputeBin(v) is one instruction.
> else:
» for all subsets Ty, T C [log k]:

> Call ComputeBin(¢, T{,j) and ComputeBin(r, T3,;’).
> forall be S, (ri)p < (7)p + F(7,1}7)

ComputeBin uses 3log k bits of memory and makes 2 x 2298k = 242 recursive calls.
It gives branching program with width 23198k = k3 and length ©((2k)?"k°(1). Total
O(k?Mt0M) states.

Worse than pebbling, which uses ©((k + 1)) states.

algorithm ‘ width ‘ length ‘ total states

One-hot 20(K) O(k24h) SO(kTh)

Binary KkO(h) k©(h)

algorithm ‘ width ‘ length ‘ total states

One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 ,©(h) kO(h)
Hybrid 9751 k) 20(ah) 4 O(1) 2@ (ah+ 27 k)

algorithm width length total states
One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 ,©(h) kO(h)

Hybrid 29(z=10) 20(ah) (1) | @@kt zITH)
Hybrid, a =1 20(k) 20(h) O(1) 2O (k+h)

algorithm width length total states
One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 k®(h) kO(h)

Hybrid 20(5557 k) 20(ah) ;O(1) 9Ot 5521 k)
Hybrid, a =1 20(k) 20(h) O(1) 2O (k+h)
Hybrid, a = log(k +1) | k1) KkOh) kOh)

algorithm width length total states
One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 k©(h) k©(h)

Hybrid 20(5557 k) 20(ah) ;O(1) 9Ot 5521 k)
Hybrid, a =1 20(k) 20(h) O(1) 2O (k+h)
Hybrid, a = log(k +1) | k() KOh) KO(h)

Hybrid, a = log(X + 1)

o((% +1)°"

O((% +1)°")

algorithm width length total states
One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 k©(h) k©(h)

Hybrid 20(5557 k) 20(ah) ;O(1) 9Ot 5521 k)
Hybrid, a =1 20(k) 20(h) O(1) 2O (k+h)
Hybrid, a = log(k +1) | k() KOh) KO(h)

Hybrid, a = Iog(% +1)

o((% +1)°"

O((% +1)°")

Pebbling uses ©((k 4 1)") states. Hybrid is better when h = w(k*/®).

Hybrid algorithm

The Hybrid encoding is broken into ﬁ blocks that are a bits long.

Hybrid algorithm

The Hybrid encoding is broken into ﬁ blocks that are a bits long.
For example, with k =9,a = 2:

x | block 1 | block 2 | block 3 | full encoding
1]01 00 00 010000
2|10 00 00 100000
3111 00 00 110000
4100 01 00 000100
5100 10 00 001000
6 | 00 11 00 001100
7 100 00 01 000001
8100 00 10 000010
9100 00 11 000011

Hybrid algorithm

The Hybrid encoding is broken into ﬁ blocks that are a bits long.
For example, with k =9,a = 2:

x | block 1 | block 2 | block 3 | full encoding
1]01 00 00 010000
2|10 00 00 100000
3111 00 00 110000
4100 01 00 000100
5100 10 00 001000
6 | 00 11 00 001100
7 100 00 01 000001
8100 00 10 000010
9100 00 11 000011

Each bit of Hybrid,(v) is a degree-2a polynomial in Hybrid,(¢) and Hybrid,(r).

Hybrid algorithm

The Hybrid encoding is broken into ﬁ blocks that are a bits long.
For example, with k =9,a = 2:

x | block 1 | block 2 | block 3 | full encoding
1]01 00 00 010000
2|10 00 00 100000
3111 00 00 110000
4100 01 00 000100
5100 10 00 001000
6 | 00 11 00 001100
7 100 00 01 000001
8100 00 10 000010
9100 00 11 000011

Each bit of Hybrid,(v) is a degree-2a polynomial in Hybrid,(¢) and Hybrid,(r).
Using this, we can build an algorithm that uses 3 registers with 23" 1 bits each and

makes 29(3) recursive calls at each level, for a total of 20(ah) ;O(1) layers.

Future work

» Improve the algorithm. (Better ways to compute d-ary products? We're not the
first to want them.)

» Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

	The Tree Evaluation Problem
	Motivation and definition
	Branching programs and pebbling games
	Lower bounds

	New algorithm
	Reversible computation
	Solving TEP

