Borrowing memory that's being used: catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

April 6, 2020

Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

Section 1

The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr, M. Braverman, R. Santhanam 2010] New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem

Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

$AC^{0}(6) \subseteq L \subseteq P \subseteq NP \subseteq PH$

$$AC^{0}(6) \subseteq L \subseteq P \subseteq NP \subseteq PH$$

We don't know whether $AC^{0}(6) = PH$.

$$AC^{0}(6) \subseteq L \subseteq P \subseteq NP \subseteq PH$$

We don't know whether $AC^{0}(6) = PH$.

P = "polynomial time": $O(n^{O(1)})$ time.

P = "polynomial time": $O(n^{O(1)})$ time.

L = "logarithmic space": $O(\log n)$ memory. $2^{O(\log n)} = n^{O(1)}$ configurations, so L \subseteq P. P = "polynomial time": $O(n^{O(1)})$ time.

L = "logarithmic space": $O(\log n)$ memory. $2^{O(\log n)} = n^{O(1)}$ configurations, so L \subseteq P.

 $\mathsf{TEP} \in \mathsf{P}.$ Goal: prove $\mathsf{TEP} \notin \mathsf{L}$, so $\mathsf{L} \neq \mathsf{P}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

 \blacktriangleright height = 3

 $n = \Theta(2^h k^2 \log k).$

The Tree Evaluation Problem Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

- query state: labelled with a query and has k outgoing edges labelled with the possible answers.
- ▶ *final state*: labelled with a number 1..*k*.

One state is the starting state.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

▲□▶▲□▶▲□▶▲□▶ ■ のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Limited supply of pebbles (say, 3).

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Goal: put a pebble on the root.

Theorem: *h* pebbles and $2^h - 1$ steps are enough.
Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Goal: put a pebble on the root.

Theorem: *h* pebbles and $2^h - 1$ steps are enough. Corollary: A branching program with $2^h k^h$ states can solve TEP.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
- Goal: put a pebble on the root.

Theorem: *h* pebbles and $2^h - 1$ steps are enough. Corollary: A branching program with $2^h k^h$ states can solve TEP.

Theorem: *h* pebbles are needed.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3). Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
- Goal: put a pebble on the root.

Theorem: *h* pebbles and $2^{h} - 1$ steps are enough. Corollary: A branching program with $2^{h}k^{h}$ states can solve TEP.

Theorem: *h* pebbles are needed. Conjecture (false): To solve TEP, a branching program needs $\Omega(k^h)$ states.

The Tree Evaluation Problem

Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Input size: $\Theta(2^h k^2 \log k)$.

If TEP \in L, then it can be solved by a family of branching programs with $2^{O(h+\log k)} = 2^{O(h)} k^{O(1)}$ states.

If TEP \in L, then it can be solved by a family of branching programs with $2^{O(h+\log k)} = 2^{O(h)} k^{O(1)}$ states.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Pebbling algorithm (previous best):

- \blacktriangleright 2^{*h*} layers.
- Up to k^h states per layer.
- Total $\Theta((k+1)^h)$ states.

If TEP \in L, then it can be solved by a family of branching programs with $2^{O(h+\log k)} = 2^{O(h)} k^{O(1)}$ states.

Pebbling algorithm (previous best):

- \triangleright 2^{*h*} layers.
- Up to k^h states per layer.
- ► Total $\Theta((k+1)^h)$ states.

New algorithm: $(\frac{k}{h}+1)^{\Theta(h)}k^{\Theta(1)}$ states. (Beats pebbling when $h \ge k^{4/5+\epsilon}$.)

・ロト・日本・日本・日本・日本・日本

If TEP \in L, then it can be solved by a family of branching programs with $2^{O(h+\log k)} = 2^{O(h)} k^{O(1)}$ states.

Pebbling algorithm (previous best):

- \triangleright 2^{*h*} layers.
- Up to k^h states per layer.
- ► Total $\Theta((k+1)^h)$ states.

New algorithm: $(\frac{k}{h}+1)^{\Theta(h)}k^{\Theta(1)}$ states. (Beats pebbling when $h \ge k^{4/5+\epsilon}$.) Neither algorithm fits in $2^{O(h)}k^{O(1)}$ states, so TEP \notin L is still possible. Lower bounds Solving TEP requires $\Omega(k^h)$ states (like the pebbling algorithm) if you assume... Lower bounds

Solving TEP requires $\Omega(k^h)$ states (like the pebbling algorithm) if you assume...

► the algorithm is *read-once*

Lower bounds

Solving TEP requires $\Omega(k^h)$ states (like the pebbling algorithm) if you assume...

- ▶ the algorithm is *read-once*
- or the algorithm is *thrifty*: never reads an irrelevent piece of the input.

Lower bounds

Solving TEP requires $\Omega(k^h)$ states (like the pebbling algorithm) if you assume...

- ▶ the algorithm is *read-once*
- or the algorithm is *thrifty*: never reads an irrelevent piece of the input.

New algorithm: $(\frac{k}{h}+1)^{\Theta(h)}k^{\Theta(1)} \notin \Omega(k^h)$.

The Tree Evaluation Problem

Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

Small ordinary memory

► Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

This rules out the following lower bound argument:

- At some point, you need to compute B.
- > You need to remember B (log k bits) while computing C.
- So, every level of the tree adds log k bits you need to remember.

Bounded-width polynomial-size branching programs recognize exactly those languages in NC¹. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R. Cleve 1992]

Reversible instructions:

▶ Example:
$$r_5 \leftarrow r_5 + r_4 \times x_1$$
.

linverse is
$$r_5 \leftarrow r_5 - r_4 \times x_1$$
.

Reversible instructions:

• Example:
$$r_5 \leftarrow r_5 + r_4 \times x_1$$
.

$$\blacktriangleright \text{ Inverse is } r_5 \leftarrow r_5 - r_4 \times x_1.$$

Notation: τ_j denotes the starting value of register r_j .

Reversible instructions:

- Example: $r_5 \leftarrow r_5 + r_4 \times x_1$.
- lnverse is $r_5 \leftarrow r_5 r_4 \times x_1$.

Notation: τ_j denotes the starting value of register r_j .

Definition

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

$$\succ r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Reversible instructions:

- Example: $r_5 \leftarrow r_5 + r_4 \times x_1$.
- linverse is $r_5 \leftarrow r_5 r_4 \times x_1$.

Notation: τ_j denotes the starting value of register r_j .

Definition

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

$$\triangleright r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Invert the whole sequence by running the inverse of each instruction in reverse order. (Computes -f.)

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

$$r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Lemma

Suppose there is a sequence of ℓ instructions that cleanly computes f, and each instruction has the form:

$$(r_1,\ldots,r_m) \leftarrow g(x_j,r_1,\ldots,r_m)$$

Then there is a branching program that computes f with $\ell |R|^m$ states.

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

$$\succ r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Example

Cleanly compute $x_1 + x_2$ into r_1 :

$$r_1 \leftarrow r_1 + x_1$$

$$r_1 \leftarrow r_1 + x_2$$

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

$$\succ r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Example

Cleanly compute $x_1 + x_2$ into r_1 :

$$r_1 \leftarrow r_1 + x_1 \qquad [r_1 = \tau_1 + x_1]$$

$$r_1 \leftarrow r_1 + x_2$$

A sequence of reversible instructions *cleanly computes* f into r_i if, once it finishes:

$$r_i = \tau_i + f(x_1, \ldots, x_n)$$

▶ all other registers are unchanged $(r_j = \tau_j \text{ for } j \neq i)$

Example

Cleanly compute $x_1 + x_2$ into r_1 :

▶
$$r_1 \leftarrow r_1 + x_1$$
 $[r_1 = \tau_1 + x_1]$
▶ $r_1 \leftarrow r_1 + x_2$ $[r_1 = \tau_1 + x_1 + x_2]$

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $r_3 \leftarrow r_3 + r_1 \times r_2$ ► P₁ $r_3 \leftarrow r_3 - r_1 \times r_2$ \triangleright P_2 $r_3 \leftarrow r_3 + r_1 \times r_2$ $\triangleright P_1^{-1}$ $r_3 \leftarrow r_3 - r_1 \times r_2$ $\triangleright P_2^{-1}$

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $r_{3} \leftarrow r_{3} + r_{1} \times r_{2}$ P_{1} $r_{3} \leftarrow r_{3} - r_{1} \times r_{2}$ P_{2} $r_{3} \leftarrow r_{3} + r_{1} \times r_{2}$ P_{1}^{-1} $r_{3} \leftarrow r_{3} - r_{1} \times r_{2}$ P_{2}^{-1}

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

 $r_{3} \leftarrow r_{3} + r_{1} \times r_{2}$ P_{1} $r_{3} \leftarrow r_{3} - r_{1} \times r_{2}$ P_{2} $r_{3} \leftarrow r_{3} + r_{1} \times r_{2}$ P_{1}^{-1} $r_{3} \leftarrow r_{3} - r_{1} \times r_{2}$ P_{2}^{-1}

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▶ $r_3 \leftarrow r_3 + r_1 \times r_2$ $[r_3 = \tau_3 + \tau_1 \times \tau_2]$ ▶ P_1 ▶ $r_3 \leftarrow r_3 - r_1 \times r_2$ ▶ P_2 ▶ $r_3 \leftarrow r_3 + r_1 \times r_2$ ▶ P_1^{-1} ▶ $r_3 \leftarrow r_3 - r_1 \times r_2$ ▶ P_2^{-1}

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $r_{3} \leftarrow r_{3} + r_{1} \times r_{2} \qquad [r_{3} = \tau_{3} + \tau_{1} \times \tau_{2}]$ $P_{1} \qquad [r_{1} = \tau_{1} + f_{1}, r_{2} = \tau_{2}]$ $r_{3} \leftarrow r_{3} - r_{1} \times r_{2} \qquad [r_{3} = \tau_{3} - f_{1} \times \tau_{2}]$ P_{2} $r_{3} \leftarrow r_{3} + r_{1} \times r_{2}$ P_{1}^{-1} $r_{3} \leftarrow r_{3} - r_{1} \times r_{2}$ P_{2}^{-1}

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

$$\begin{array}{l} \mathbf{r}_{3} \leftarrow r_{3} + r_{1} \times r_{2} & [r_{3} = \tau_{3} + \tau_{1} \times \tau_{2}] \\ \mathbf{P}_{1} & [r_{1} = \tau_{1} + f_{1}, r_{2} = \tau_{2}] \\ \mathbf{r}_{3} \leftarrow r_{3} - r_{1} \times r_{2} & [r_{3} = \tau_{3} - f_{1} \times \tau_{2}] \\ \mathbf{P}_{2} & [r_{1} = \tau_{1} + f_{1}, r_{2} = \tau_{2} + f_{2}] \\ \mathbf{r}_{3} \leftarrow r_{3} + r_{1} \times r_{2} & [r_{3} = \tau_{3} + \tau_{1} \times \tau_{2} + \tau_{1} \times f_{2} + f_{1} \times f_{2} \\ \mathbf{P}_{1}^{-1} \\ \mathbf{r}_{3} \leftarrow r_{3} - r_{1} \times r_{2} \\ \mathbf{P}_{2}^{-1} \end{array}$$

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

$$\begin{array}{lll} \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2] \\ \bullet & P_1 & [r_1 = \tau_1 + f_1, r_2 = \tau_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 - f_1 \times \tau_2] \\ \bullet & P_2 & [r_1 = \tau_1 + f_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2 + \tau_1 \times f_2 + f_1 \times f_2] \\ \bullet & P_1^{-1} & [r_1 = \tau_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 + f_1 \times f_2] \\ \bullet & P_2^{-1} \end{array}$$

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

$$\begin{array}{lll} \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2] \\ \bullet & P_1 & [r_1 = \tau_1 + f_1, r_2 = \tau_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 - f_1 \times \tau_2] \\ \bullet & P_2 & [r_1 = \tau_1 + f_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2 + \tau_1 \times f_2 + f_1 \times f_2] \\ \bullet & P_1^{-1} & [r_1 = \tau_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 + f_1 \times f_2] \\ \bullet & P_2^{-1} & [r_1 = \tau_1, r_2 = \tau_2] \end{array}$$
Lemma: Multiplication

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

$$\begin{array}{lll} \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2] \\ \bullet & P_1 & [r_1 = \tau_1 + f_1, r_2 = \tau_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 - f_1 \times \tau_2] \\ \bullet & P_2 & [r_1 = \tau_1 + f_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 + r_1 \times r_2 & [r_3 = \tau_3 + \tau_1 \times \tau_2 + \tau_1 \times f_2 + f_1 \times f_2] \\ \bullet & P_1^{-1} & [r_1 = \tau_1, r_2 = \tau_2 + f_2] \\ \bullet & r_3 \leftarrow r_3 - r_1 \times r_2 & [r_3 = \tau_3 + f_1 \times f_2] \\ \bullet & P_2^{-1} & [r_1 = \tau_1, r_2 = \tau_2] \end{array}$$

Cost: need to run P_1 and P_2 twice each. But: no memory needs to be reserved.

The Tree Evaluation Problem

Motivation and definition Branching programs and pebbling games Lower bounds

New algorithm

Reversible computation Solving TEP

Let $R = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Define [x = y] = 1 if x = y, 0 otherwise.

Let $R = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Define [x = y] = 1 if x = y, 0 otherwise. Suppose node v has children ℓ and r:

Let $R = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Define [x = y] = 1 if x = y, 0 otherwise. Suppose node v has children ℓ and r:

Let $R = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Define [x = y] = 1 if x = y, 0 otherwise. Suppose node v has children ℓ and r:

$$[v = 1] = [\ell = 2] \times [r = 1] + [\ell = 2] \times [r = 2] + [\ell = 1] \times [r = 3]$$

3

3

∕3 3 ∕×

Let $R = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. Define [x = y] = 1 if x = y, 0 otherwise. Suppose node v has children ℓ and r:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Let f_v denote v's table. In general,

2

$$[v = x] = \sum_{(y,z) \in [k]^2} [f_v(y,z) = x] \times [\ell = y] \times [r = z]$$

$$[v=x] = \sum_{(y,z)\in [k]^2} [f_v(y,z)=x] \times [\ell=y] \times [r=z]$$

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$

$$[v=x] = \sum_{(y,z)\in [k]^2} [f_v(y,z)=x] \times [\ell=y] \times [r=z]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$ If v is a leaf:

▶ $r_i \leftarrow r_i + [v = x]$ is one instruction.

$$[v=x] = \sum_{(y,z)\in [k]^2} [f_v(y,z)=x] \times [\ell=y] \times [r=z]$$

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$ If v is a leaf: $r_i \leftarrow r_i + [v = x]$ is one instruction. else: for $(y, z) \in [k]^2$: $r_i \leftarrow r_i + [f_v(y, z) = x] \times [\ell = y] \times [r = z]$ using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode(r, z, j'), where j and j' are two registers other than i.

$$[v=x]=\sum_{(y,z)\in [k]^2}[f_v(y,z)=x] imes [\ell=y] imes [r=z]$$

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$ If v is a leaf: $r_i \leftarrow r_i + [v = x]$ is one instruction. else: for $(y, z) \in [k]^2$: $r_i \leftarrow r_i + [f_v(y, z) = x] \times [\ell = y] \times [r = z]$ using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode(r, z, j'), where j and j' are two registers other than i.

Needs three registers.

$$[v=x]=\sum_{(y,z)\in [k]^2}[f_v(y,z)=x] imes [\ell=y] imes [r=z]$$

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$ If v is a leaf: $r_i \leftarrow r_i + [v = x]$ is one instruction. else: for $(y, z) \in [k]^2$: $r_i \leftarrow r_i + [f_v(y, z) = x] \times [\ell = y] \times [r = z]$ using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode(r, z, j'), where j and j' are two registers other than i.

Needs three registers. Gives branching program with width 8 and length $(k^2)^{h-1}$.

$$[v=x]=\sum_{(y,z)\in [k]^2}[f_v(y,z)=x] imes [\ell=y] imes [r=z]$$

Algorithm

CheckNode(v, x, i)Parameters: node v, value $x \in [k]$, target register iComputes $r_i \leftarrow r_i + [v = x]$ If v is a leaf: $r_i \leftarrow r_i + [v = x]$ is one instruction. else: for $(y, z) \in [k]^2$: $r_i \leftarrow r_i + [f_v(y, z) = x] \times [\ell = y] \times [r = z]$ using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode(r, z, j'), where j and j' are two registers other than i.

Needs three registers. Gives branching program with width 8 and length $(k^2)^{h-1}$. Worse than pebbling, which uses $\Theta((k+1)^h)$ states.

► for
$$(y, z) \in [k]^2$$
:
► $r_i \leftarrow r_i + [f_v(y, z) = x] \times [\ell = y] \times [r = z]$
 $r_j \leftarrow r_j + [\ell = 1]$
 $r_i \leftarrow r_i - r_j \times r_{j'}$
 $r_{j'} \leftarrow r_{j'} + [r = 1]$
 $r_i \leftarrow r_i + r_j \times r_{j'}$
 $r_j \leftarrow r_j - [\ell = 1]$
 $r_i \leftarrow r_i - r_j \times r_{j'}$
 $r_{j'} \leftarrow r_{j'} - [r = 1]$
 $r_i \leftarrow r_i + r_j \times r_{j'}$

▲□▶▲圖▶▲≣▶▲≣▶ ■ の�?

 $r_j \leftarrow r_j + [\ell = 1]$ $r_i \leftarrow r_i - r_j \times r_{j'}$ $r_{j'} \leftarrow r_{j'} + [r = 1]$ $r_i \leftarrow r_i + r_j \times r_{j'}$ $r_j \leftarrow r_j - [\ell = 1]$ $r_i \leftarrow r_i - r_j \times r_{j'}$ $r_{j'} \leftarrow r_{j'} - [r = 1]$ $r_i \leftarrow r_i + r_j \times r_{j'}$

$r_j \leftarrow r_j + [\ell = 1]$	$\mathit{r_j} \leftarrow \mathit{r_j} + [\ell = 1]$	
$r_i \leftarrow r_i - r_j \times r_{j'}$	$r_i \leftarrow r_i - r_j \times r_{j'}$	
$r_{j'} \leftarrow r_{j'} + [r=2]$	$r_{j'} \leftarrow r_{j'} + [r = 3]$	
$r_i \leftarrow r_i + r_j \times r_{j'}$	$r_i \leftarrow r_i + r_j \times r_{j'}$	
$r_j \leftarrow r_j - [\ell = 1]$	$\textit{r}_j \leftarrow \textit{r}_j - [\ell = 1]$	
$r_i \leftarrow r_i - r_j \times r_{j'}$	$r_i \leftarrow r_i - r_j \times r_{j'}$	
$r_{j'} \leftarrow r_{j'} - [r = 2]$	$r_{j'} \leftarrow r_{j'} - [r = 3]$	
$r_i \leftarrow r_i + r_j \times r_{j'}$	$r_i \leftarrow r_i + r_j \times r_{j'}$	

One-hot encoding

Given a value $x \in [k]$, define $OneHot(x) = ([x = 1], [x = 2], ..., [x = k]) \in \{0, 1\}^k$. E.g. for k = 3, OneHot(2) = (0, 1, 0).

ComputeOneHot(v, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^k$. Parameters: node v, target register i Computes $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$

ComputeOneHot(v, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^k$. Parameters: node v, target register iComputes $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$

- ► If *v* is a leaf:
 - $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$ is one instruction.

ComputeOneHot(v, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^k$. Parameters: node v, target register i Computes $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$ If v is a leaf:

▶ $\vec{r_i} \leftarrow \vec{r_i}$ + OneHot(v) is one instruction.

else:

$$\begin{array}{l} \overbrace{\vec{r}_i \leftarrow \vec{r}_i + F(\vec{r}_j, \vec{r}_{j'}) \\ \overbrace{\vec{r}_j \leftarrow \vec{r}_j + \text{OneHot}(\ell) \\ \hline{\vec{r}_i \leftarrow \vec{r}_i - F(\vec{r}_j, \vec{r}_{j'}) \\ \overbrace{\vec{r}_i' \leftarrow \vec{r}_i' + \text{OneHot}(r) \\ \hline{\vec{r}_i \leftarrow \vec{r}_i + F(\vec{r}_j, \vec{r}_{j'}) \\ \hline{\vec{r}_i \leftarrow \vec{r}_i - F(\vec{r}_j, \vec{r}_{j'}) \\ \hline{\vec{r}_i \leftarrow \vec{r}_i - F(\vec{r}_j, \vec{r}_{j'}) \\ \hline{\vec{r}_i' \leftarrow \vec{r}_i' - \text{OneHot}(\ell) \\ \hline{\vec{r}_{i'} \leftarrow \vec{r}_{j'} - \text{OneHot}(r) \\ \end{array}$$

ComputeOneHot(v, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^k$. Parameters: node v, target register *i* Computes $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$ If v is a leaf. $r_i \leftarrow \vec{r_i} + OneHot(v)$ is one instruction. else: $F(\vec{r_j},\vec{r_{j'}})_x = \sum [f_v(y,z) = x] \times (\vec{r_j})_y \times (\vec{r_{j'}})_z$ $\blacktriangleright \vec{r_i} \leftarrow \vec{r_i} + F(\vec{r_i}, \vec{r_{i'}})$ \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(\ell)$ $(v,z) \in [k]^2$ \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} - F(\vec{r_i}, \vec{r_{i'}})$ \blacktriangleright $\vec{r_{i'}} \leftarrow \vec{r_{i'}} + \text{OneHot}(r)$ \blacktriangleright $\vec{r}_i \leftarrow \vec{r}_i + F(\vec{r}_i, \vec{r}_{i'})$ Note: \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} - \text{OneHot}(\ell)$ ▶ $\vec{r_i} \leftarrow \vec{r_i} - F(\vec{r_j}, \vec{r_{j'}})$ [v = x] = $\sum [f_v(y, z) = x] \times [\ell = y] \times [r = z]$ \blacktriangleright $\vec{r_{i'}} \leftarrow \vec{r_{i'}} - \text{OneHot}(r)$ $(y,z) \in [k]^2$

ComputeOneHot(v, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^k$. Parameters: node v, target register *i* Computes $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(v)$ If v is a leaf: $r_i \leftarrow \vec{r_i} + OneHot(v)$ is one instruction. else: $F(\vec{r_j},\vec{r_{j'}})_x = \sum [f_v(y,z) = x] \times (\vec{r_j})_y \times (\vec{r_{j'}})_z$ $\blacktriangleright \vec{r_i} \leftarrow \vec{r_i} + F(\vec{r_i}, \vec{r_{i'}})$ \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} + \text{OneHot}(\ell)$ $(v,z) \in [k]^2$ \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} - F(\vec{r_i}, \vec{r_{i'}})$ \blacktriangleright $\vec{r_{i'}} \leftarrow \vec{r_{i'}} + \text{OneHot}(r)$ \blacktriangleright $\vec{r}_i \leftarrow \vec{r}_i + F(\vec{r}_i, \vec{r}_{i'})$ Note: \blacktriangleright $\vec{r_i} \leftarrow \vec{r_i} - \text{OneHot}(\ell)$ \blacktriangleright $\vec{r_{i'}} \leftarrow \vec{r_{i'}} - \text{OneHot}(r)$ $(y,z) \in [k]^2$ Gives branching program with width 2^{3k} , length $\Theta(k^2 4^h)$. Total $2^{\Theta(k+h)}$ states.

Pebbling algorithm: $\Theta((k+1)^h)$ ComputeOneHot: $2^{\Theta(k+h)}$ states. Pebbling algorithm: $\Theta((k+1)^h) = \Theta(2^{h \log_2(k+1)})$ ComputeOneHot: $2^{\Theta(k+h)}$ states. Better when $h \log(k+1) >> k+h$, i.e. when $h >> \frac{k}{\log k}$.

Pebbling algorithm: $\Theta((k+1)^h) = \Theta(2^{h \log_2(k+1)})$ ComputeOneHot: $2^{\Theta(k+h)}$ states. Better when $h \log(k+1) >> k+h$, i.e. when $h >> \frac{k}{\log k}$.

Can we do better?

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$Bin(v)_1 = [v = 2] + [v = 3] =$$

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$Bin(v)_1 = [v = 2] + [v = 3] =$$

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$Bin(v)_1 = [v = 2] + [v = 3] = [\ell = 1] \times [r = 1] + [\ell = 1] \times [r = 2] + [\ell = 2] \times [r = 3]$$

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$Bin(v)_1 = [v = 2] + [v = 3] = [\ell = 1] \times [r = 1] + [\ell = 1] \times [r = 2] + [\ell = 2] \times [r = 3]$$

$$[\ell=1]=(1+\mathsf{Bin}(\ell)_1) imes\mathsf{Bin}(\ell)_2$$

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$\begin{split} &\mathsf{Bin}(v)_1 = [v=2] + [v=3] = \\ &[\ell=1] \times [r=1] + [\ell=1] \times [r=2] + [\ell=2] \times [r=3] \\ &= (1 + \mathsf{Bin}(\ell)_1) \times \mathsf{Bin}(\ell)_2 \times (1 + \mathsf{Bin}(r)_1) \times \mathsf{Bin}(r)_2 \\ &+ (1 + \mathsf{Bin}(\ell)_1) \times \mathsf{Bin}(\ell)_2 \times \mathsf{Bin}(r)_1 \times (1 + \mathsf{Bin}(r)_2) \\ &+ \mathsf{Bin}(\ell)_1 \times (1 + \mathsf{Bin}(\ell)_2) \times \mathsf{Bin}(r)_1 \times \mathsf{Bin}(r)_2 \end{split}$$

$$[\ell=1]=(1+\mathsf{Bin}(\ell)_1) imes\mathsf{Bin}(\ell)_2$$

Given a value $x \in [k]$, let $Bin(x) \in \{0,1\}^{\lceil \log k \rceil}$ be its binary encoding. E.g. for k = 3, Bin(1) = (0, 1).

$$Bin(v)_1 = [v = 2] + [v = 3] = [\ell = 1] \times [r = 1] + [\ell = 1] \times [r = 2] + [\ell = 2] \times [r = 3] = (1 + Bin(\ell)_1) \times Bin(\ell)_2 \times (1 + Bin(r)_1) \times Bin(r)_2 + (1 + Bin(\ell)_1) \times Bin(\ell)_2 \times Bin(r)_1 \times (1 + Bin(r)_2) + Bin(\ell)_1 \times (1 + Bin(\ell)_2) \times Bin(r)_1 \times Bin(r)_2$$

 $[\ell=1]=(1+\mathsf{Bin}(\ell)_1)\times\mathsf{Bin}(\ell)_2$

In general, $Bin(v)_x$ can be written as a degree- $2\lceil \log k \rceil$ polynomial involving $Bin(\ell)$ and Bin(r).

Lemma: Multiplication

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

 \triangleright P_1 $r_3 \leftarrow r_3 - r_1 \times r_2$ \triangleright P_2 \succ $r_3 \leftarrow r_3 + r_1 \times r_2$ $\triangleright P_{1}^{-1}$ \blacktriangleright $r_3 \leftarrow r_3 - r_1 \times r_2$ $\triangleright P_2^{-1}$ $r_3 \leftarrow r_3 + r_1 \times r_2$

Lemma: Multiplication

Suppose P_1 cleanly computes f_1 into r_1 and P_2 cleanly computes f_2 into r_2 . Then we can cleanly compute $f_1 \times f_2$ into r_3 as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 P_1 $[r_1 = \tau_1 + f_1, r_2 = \tau_2]$ $r_3 \leftarrow r_3 - r_1 \times r_2$ P_2 $[r_1 = \tau_1 + f_1, r_2 = \tau_2 + f_2]$ \blacktriangleright $r_2 \leftarrow r_3 + r_1 \times r_2$ \triangleright P_1^{-1} $[r_1 = \tau_1, r_2 = \tau_2 + f_2]$ \blacktriangleright $r_3 \leftarrow r_3 - r_1 \times r_2$ \triangleright P_2^{-1} $[r_1 = \tau_1, r_2 = \tau_2]$ \blacktriangleright $r_3 \leftarrow r_3 + r_1 \times r_2$

Lemma: *d*-ary multiplication

Suppose we have *d* values f_1, \ldots, f_d , and a general subroutine *P*. For any $S \subseteq [d]$, P(S) cleanly computes $r_i \leftarrow r_i + f_i$ for every $i \in S$, and leaves r_j alone for $j \notin S$. Then we can cleanly compute $f_1 \times \cdots \times f_d$ into r_{d+1} as follows:

Lemma: *d*-ary multiplication

Suppose we have *d* values f_1, \ldots, f_d , and a general subroutine *P*. For any $S \subseteq [d]$, P(S) cleanly computes $r_i \leftarrow r_i + f_i$ for every $i \in S$, and leaves r_j alone for $j \notin S$. Then we can cleanly compute $f_1 \times \cdots \times f_d$ into r_{d+1} as follows:

• Call *P* once more to ensure $r_i = \tau_i$ for $i = 1, \ldots, d$.
Lemma: *d*-ary multiplication

Suppose we have *d* values f_1, \ldots, f_d , and a general subroutine *P*. For any $S \subseteq [d]$, P(S) cleanly computes $r_i \leftarrow r_i + f_i$ for every $i \in S$, and leaves r_j alone for $j \notin S$. Then we can cleanly compute $f_1 \times \cdots \times f_d$ into r_{d+1} as follows:

• Call *P* once more to ensure $r_i = \tau_i$ for $i = 1, \ldots, d$.

Uses d + 1 registers and 2^d recursive calls.

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq \lceil \log k \rceil$, target register iComputes: $\vec{r_{ib}} \leftarrow \vec{r_{ib}} + Bin(v)_b$ for all $b \in S$

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq \lceil \log k \rceil$, target register iComputes: $\vec{r_{ib}} \leftarrow \vec{r_{ib}} + Bin(v)_b$ for all $b \in S$

If v is a leaf:

▶ $\vec{r_i} \leftarrow \vec{r_i}$ + ComputeBin(ν) is one instruction.

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq \lceil \log k \rceil$, target register iComputes: $\vec{r_{ib}} \leftarrow \vec{r_{ib}} + Bin(v)_b$ for all $b \in S$ If v is a leaf: $\vec{r_i} \leftarrow \vec{r_i} + ComputeBin(v)$ is one instruction. else: for all subsets $T_1, T_2 \subseteq \lceil \log k \rceil$: Call ComputeBin (ℓ, T'_1, j) and ComputeBin (r, T'_2, j') .

▶ for all $b \in S$, $(\vec{r_i})_b \leftarrow (\vec{r_i})_b + F(\vec{r_j}, \vec{r_{j'}})$

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq \lceil \log k \rceil$, target register iComputes: $\vec{r_{ib}} \leftarrow \vec{r_{ib}} + Bin(v)_b$ for all $b \in S$ If v is a leaf: $\vec{r_i} \leftarrow \vec{r_i} + ComputeBin(v)$ is one instruction. else: for all subsets $T_1, T_2 \subseteq \lceil \log k \rceil$: Call ComputeBin (ℓ, T'_1, j) and ComputeBin (r, T'_2, j') . for all $b \in S$, $(\vec{r_i})_b \leftarrow (\vec{r_i})_b + F(\vec{r_j}, \vec{r_{j'}})$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k} = 2k^2$ recursive calls.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq [\log k]$, target register i Computes: $\vec{r}_{ib} \leftarrow \vec{r}_{ib} + Bin(v)_b$ for all $b \in S$ If v is a leaf. $ightarrow \vec{r_i} \leftarrow \vec{r_i} + \text{ComputeBin}(v)$ is one instruction. else: • for all subsets $T_1, T_2 \subset [\log k]$: Call ComputeBin (ℓ, T'_1, i) and ComputeBin (r, T'_2, i') . ▶ for all $b \in S$, $(\vec{r_i})_b \leftarrow (\vec{r_i})_b + F(\vec{r_i}, \vec{r_{i'}})$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k} = 2k^2$ recursive calls. It gives branching program with width $2^{3 \log k} = k^3$ and length $\Theta((2k)^{2h}k^{O(1)})$. Total $\Theta(k^{2h+O(1)})$ states.

ComputeBin(v, S, i) Uses vector registers $\vec{r_i} \in \{0, 1\}^{\lceil \log k \rceil}$. Parameters: node v, set $S \subseteq [\log k]$, target register i Computes: $\vec{r}_{ib} \leftarrow \vec{r}_{ib} + Bin(v)_b$ for all $b \in S$ If v is a leaf. $ightarrow \vec{r_i} \leftarrow \vec{r_i} + \text{ComputeBin}(v)$ is one instruction. else: • for all subsets $T_1, T_2 \subset [\log k]$: Call ComputeBin (ℓ, T'_1, i) and ComputeBin (r, T'_2, i') . ▶ for all $b \in S$, $(\vec{r_i})_b \leftarrow (\vec{r_i})_b + F(\vec{r_i}, \vec{r_{i'}})$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k} = 2k^2$ recursive calls. It gives branching program with width $2^{3 \log k} = k^3$ and length $\Theta((2k)^{2h}k^{O(1)})$. Total $\Theta(k^{2h+O(1)})$ states.

Worse than pebbling, which uses $\Theta((k+1)^h)$ states.

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta(k^2 4^h)$	$2^{\Theta(k+h)}$
Binary	k^3	$k^{\Theta(h)}$	$k^{\Theta(h)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta(k^2 4^h)$	$2^{\Theta(k+h)}$
Binary	k ³	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta(\frac{a}{2^a-1}k)}$	$2^{\Theta(ah)}k^{\Theta(1)}$	$2^{\Theta(ah+rac{a}{2^a-1}k))}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta(k^2 4^h)$	$2^{\Theta(k+h)}$
Binary	k ³	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta(\frac{a}{2^a-1}k)}$	$2^{\Theta(ah)}k^{\Theta(1)}$	$2^{\Theta(ah+\frac{a}{2^a-1}k))}$
Hybrid, $a = 1$	20(11)	$2^{\circ(n)}k^{\circ(1)}$	20(((())))

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta(k^2 4^h)$	$2^{\Theta(k+h)}$
Binary	k ³	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta(\frac{a}{2^a-1}k)}$	$2^{\Theta(ah)}k^{\Theta(1)}$	$2^{\Theta(ah+rac{a}{2^a-1}k))}$
Hybrid, $a=1$	$2^{\Theta(k)}$	$2^{\Theta(h)}k^{\Theta(1)}$	$2^{\Theta(k+h)}$
Hybrid, $a = \log(k + 1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta(k^24^h)$	$2^{\Theta(k+h)}$
Binary	k ³	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta(\frac{a}{2^a-1}k)}$	$2^{\Theta(ah)}k^{\Theta(1)}$	$2^{\Theta(ah+rac{a}{2^a-1}k))}$
Hybrid, $a = 1$	$2^{\Theta(k)}$	$2^{\Theta(h)}k^{\Theta(1)}$	$2^{\Theta(k+h)}$
Hybrid, $a = \log(k + 1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid, $a = \log(\frac{k}{h} + 1)$	$\Theta((rac{k}{h}+1)^{\Theta(h)})$	$\Theta((rac{k}{h}+1)^{\Theta(h)})$	$(rac{k}{h}+1)^{5h}k^{\Theta(1)}$

・ロト・日本・日本・日本・日本・日本

algorithm	width	length	total states	
One-hot	$2^{\Theta(k)}$	$\Theta(k^2 4^h)$	$2^{\Theta(k+h)}$	
Binary	k ³	$k^{\Theta(h)}$	$k^{\Theta(h)}$	
Hybrid	$2^{\Theta(\frac{a}{2^a-1}k)}$	$2^{\Theta(ah)}k^{\Theta(1)}$	$2^{\Theta(ah+rac{a}{2^a-1}k))}$	
Hybrid, $a = 1$	$2^{\Theta(k)}$	$2^{\Theta(h)}k^{\Theta(1)}$	$2^{\Theta(k+h)}$	
Hybrid, $a = \log(k+1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$	
Hybrid, $a = \log(\frac{k}{h} + 1)$	$\Theta((rac{k}{h}+1)^{\Theta(h)})$	$\Theta((rac{k}{h}+1)^{\Theta(h)})$	$(rac{k}{h}+1)^{5h}k^{\Theta(1)}$	
(4.4/5)				

Pebbling uses $\Theta((k+1)^h)$ states. Hybrid is better when $h = \omega(k^{4/5})$.

The Hybrid encoding is broken into $\frac{k}{2^a-1}$ blocks that are *a* bits long.

The Hybrid encoding is broken into $\frac{k}{2^a-1}$ blocks that are *a* bits long. For example, with k = 9, a = 2:

X	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

The Hybrid encoding is broken into $\frac{k}{2^a-1}$ blocks that are *a* bits long. For example, with k = 9, a = 2:

X	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

Each bit of Hybrid_a(v) is a degree-2a polynomial in Hybrid_a(ℓ) and Hybrid_a(r).

The Hybrid encoding is broken into $\frac{k}{2^a-1}$ blocks that are *a* bits long. For example, with k = 9, a = 2:

X	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

Each bit of Hybrid_a(v) is a degree-2a polynomial in Hybrid_a(ℓ) and Hybrid_a(r). Using this, we can build an algorithm that uses 3 registers with $\frac{ka}{2^a-1}$ bits each and makes $2^{\Theta(a)}$ recursive calls at each level, for a total of $2^{\Theta(ah)}k^{\Theta(1)}$ layers.

Future work

- Improve the algorithm. (Better ways to compute *d*-ary products? We're not the first to want them.)
- Find new TEP lower bounds that apply to these algorithms. (Old lower bounds apply only to read-once or "thrifty" algorithms.)