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The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]
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P = “polynomial time": O(no(l)) time.

L = “logarithmic space”: O(log n) memory.
20(logn) — O(1) configurations, so L C P.

TEP € P.
Goal: prove TEP ¢ L, so L # P.





















The Tree Evaluation Problem

Branching programs and pebbling games






A query is either a~ leaf or a cell in a table of an internal node.



A query is either a~ leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:
» query state: labelled with a query and has k outgoing edges labelled with the
possible answers.
» final state: labelled with a number 1..k.

One state is the starting state.
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Pebbling game [Paterson Hewitt 1970]

. Limited supply of pebbles (say, 3).
Two kinds of move:

> Move a pebble to a leaf.

. » If a node’s two children have pebbles, move a
\ pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2" — 1 steps are enough.
Corollary: A branching program with 2k" states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Q(k") states.



The Tree Evaluation Problem

Lower bounds
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Input size: ©(2"k? log k). So, log space = O(h + log k) memory.
If TEP € L, then it can be solved by a family of branching programs with
20(htlogk) — »0(h) | O(1) states.

Pebbling algorithm (previous best):
> 2 layers.
> Up to k" states per layer.
» Total ©((k + 1)") states.

New algorithm: (£ + 1)®(Mk®() states. (Beats pebbling when h > k*/5+<))

Neither algorithm fits in 20(" kO(1) states, so TEP ¢ L is still possible.
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Lower bounds
Solving TEP requires Q(k") states (like the pebbling algorithm) if you assume. . .

» the algorithm is read-once

» or the algorithm is thrifty: never reads an irrelevent piece of the input.

New algorithm: (X + 1)®(Mk®Q) ¢ Q(kh).
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Solving TEP
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Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

» Small ordinary memory

» Large memory that must be returned to its original state
Result: with O(log n) ordinary memory and n®(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, ...

This rules out the following lower bound argument:
B/ \C » At some point, you need to compute B.
» You need to remember B (log k bits) while computing C.

» So, every level of the tree adds log k bits you need to
remember.



Bounded-width polynomial-size branching programs recognize exactly those languages
in NC. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]
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Ring R

Inputs x1,...,xs € R

Work registers ry,...,rm € R

Reversible instructions:
» Example: r5 < 5+ ry X x1.
P Inverse is r5 < r5s — rg X X1.

Notation: 7; denotes the starting value of register r;.

Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T1+ f(Xl,...,X,,)

» all other registers are unchanged (r; = 7; for j # i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes —f.)



Definition
A sequence of reversible instructions cleanly computes f into r; if, once it finishes:

> =1+ f(x1,...,xpn)
> all other registers are unchanged (r; = 7; for j # i)

Lemma
Suppose there is a sequence of { instructions that cleanly computes f, and each

instruction has the form:
(..., rm) < g(xj,ri,....rm)

Then there is a branching program that computes f with £|R|™ states.
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Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T+ f(Xl,...,X,,)
» all other registers are unchanged (r; = 7; for j # i)

Example

Cleanly compute x; + x» into r:
> n+<n+x [r1:n+x1]
> < n+x



Definition

A sequence of reversible instructions cleanly computes f into r; if, once it finishes:
> ri=T+ f(Xl,...,X,,)
» all other registers are unchanged (r; = 7; for j # i)

Example
Cleanly compute x; + x» into r:
> <+ n+x [n =7+ x1]
> n+nt+x [r1271+X1+X2]
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Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn
P1
3 <—rn—nxnn
P>
R<<mnr+mrnXxXn
P!
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P!
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Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> 3 nrt+rnxn
P1
r3<—mn—mnxXnmn
P>
R mnr+rnxXn
Pt
r<—mn—nxXnmn
Pyt
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Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:
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> P
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> P,

> r3i—nrn+nxn

> Pt
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Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3i—rn+nxXn [r3:7'3+7'1><7-2]
> P [n =711+ f,n="]
>r3+r3—r1><r2 [r3:7'3—f1><7'2]
> P,

> n<—nt+nxn

> Pt

> r3i—rn—rnxn

> Pyt



Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [ =13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [ =73 —f X 7]

> P [n=71+f,n="+Hh]

> R nt+tnxn [m=m3+T1 XT+71 X h+Ff X0
> Pt
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Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [ =13+ 71 X 1]

> P [n=m+f,rn=r"]

> <n—nxn [ =73 —f X 7]

> P [n=m+f,n="m+0]

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Py [n=T11,n="2+1)]

> r3<—rn—rnxn [r3:7'3—|—f1><f2]

> Pyt



Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> r3rntrnxn [ =13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [ =73 —f X 7]

> P [n=71+f,n="m+Hh)

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Pt [n="1,n="m+10]

> r3<—rn—rnxn [r3:7'3+f1><f2]

> P{l [n =71, =m)]



Lemma: Multiplication

Suppose P; cleanly computes fi into r; and P, cleanly computes f, into r». Then we
can cleanly compute f; X f; into r3 as follows:

> n<nt+nxn [ =13+ 71 X 1]

> P [r1:7'1+f1,r2:7'2]

> <n—nxn [ =73 —f X 7]

> P [n=71+f,n="m+Hh)

> R nt+tnxn [m=m3+7T1 X2+ 71X+ HfXHhH
> Pt [n=71,n="+0f)

> r3<—rn—rnxn [r3:7'3+f1><f2]

> P;l [r1:7-1,r2:7'2]

Cost: need to run P; and P, twice each. But: no memory needs to be reserved.
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Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
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Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

[v=1]=
[0 =2]x[r=1]+[(=2]x[r=2]+[( =1]x[r = 3]




A formula for TEP

Let R =7/2Z = {0,1}. Define [x = y] =1 if x = y, 0 otherwise.
Suppose node v has children ¢ and r:

[v=1]=
[=2]x[r=1]4+[(=2]x[r=2]+[¢ =1]x[r = 3]

Let f, denote v's table. In general,

v=xl= > [fn2)=xx[=y]x[r=2]

(y,2)€lk]?



First attempt
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Algorithm

CheckNode(v, x, i)

Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
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CheckNode(r, z, ), where j and j are two registers other than /.
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First attempt

v=x= ) [Krn2)=xIx[t=y]x[r=2]

(v.2)elk]?

Algorithm
CheckNode(v, x, i)
Parameters: node v, value x € [Kk], target register i
Computes r; < ri + [v = x]
> If vis a leaf:
» ri < ri + [v = x] is one instruction.
> else: for (y,z) € [K]*:
> i ri+[f(y,z)=x]x[l=y] x[r=2]
using multiplication lemma: 2 calls each to CheckNode(¢, y, ) and
CheckNode(r, z, ), where j and j are two registers other than /.

Needs three registers. Gives branching program with width 8 and length (k).
Worse than pebbling, which uses ©((k + 1)") states.



> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]



> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]

et lE=1]
fi&=ri—r Xy
rjp < rpp+[r =1]
fi<=ri+rp X rj
rjr—[t=1]
ri 4 ri—r; X ry
rip < ryp —[r=1]

fi<—=ri+rpXrp



> for (y,z) € [k]%:
> ri—ri+[h(y,z)=x]x[{=y]x[r=2Z]

et lE=1]
fi&=ri—r Xy
rjp < rpp+[r =1]
fi<=ri+rp X rj
rjr—[t=1]
ri 4 ri—r; X ry
rip < ryp —[r=1]

fi<—=ri+rpXrp

rjr+0=1]
ri&=ri—rjXrj
rir < rpp +[r=2]
fi<=ri+r X rj
rjpe = =1]
ri 4= ri—r; X rjs
rjp < rjp — [r =2]

ri <= ri+rXrp

<+ lE=1]
i <=1 —rj X rjs
rj <= ry + [r = 3]
fi = ri+r X rj
rjr—[0=1]
ri4—ri— 1 X rps
rj < ry —[r=73]

fi<—=ri+rpXrjp



One-hot encoding

Given a value x € [k], define OneHot(x) = ([x = 1], [x = 2],..., [x = k]) € {0, 1}*.
E.g. for k =3, OneHot(2) = (0, 1,0).



Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)



Algorithm
ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)
> If vis a leaf:

» i < Fi + OneHot(v) is one instruction.



Algorithm
ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)
> If v is a leaf:
» i < Fi + OneHot(v) is one instruction.

v
@
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fi i+ F(F, )
r;  rj + OneHot(¢)
rj» < rj» + OneHot(r)
e 1 F (G )

fj < r; — OneHot(¢)
rj7 < rj» — OneHot(r)



Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)

> If vis a leaf:

>

v
@
0
D
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Fi < Fi + OneHot(v) is one instruction.

Fi 7+ F(7, 1) F(G,5)x= D [fly,2) =x] x (F)y x (7):
rj «= rj + OneHot(() (v.2)€lK]?

ri < 1 = F(rj, 177)

rj» < rj» + OneHot(r)

i< 1+ F(rj, r7) Note:

fj < r; — OneHot(¢)

Fi 7 — F(7,17) v=xI= > [fr2)=xIxl=ylx[r=1]
rj7 < rj» — OneHot(r) (v,2)€[K]?



Algorithm

ComputeOneHot(v, i) Uses vector registers ;i € {0,1}X.
Parameters: node v, target register i
Computes r; < r; + OneHot(v)

> If vis a leaf:

>

v
@
0
D

YYVVYVYVYVY ]

Fi < Fi + OneHot(v) is one instruction.

Fi 7+ F(7, 1) F(G,5)x= D [fly,2) =x] x (F)y x (7):
rj «= rj + OneHot(() (v.2)€lK]?

ri < 1 = F(rj, 177)

rj» < rj» + OneHot(r)

i< 1+ F(rj, r7) Note:

fj < r; — OneHot(¢)

Fi 7 — F(7,17) v=xI= > [fr2)=xIxl=ylx[r=1]
rj7 < rj» — OneHot(r) (v,2)€[K]?

Gives branching program with width 23k, length ©(k%4"). Total 20(k+h) states.
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Can we do better?
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Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).
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Binary encoding

Given a value x € [K], let Bin(x) € {0,1}/'8] be its binary encoding.
E.g. for k =3, Bin(1) = (0, 1).

Bin(v)i=[v=2]+[v=3]=
[=1]x[r=1]4+[=1]x[r=2]+[¢ =2]x[r = 3]
= (14 Bin(¢)1) x Bin(¢)2 x (1 + Bin(r)1) x Bin(r)2
+(1 4 Bin(¢)1) x Bin(£)2 x Bin(r)1 x (1 4 Bin(r)z)
+ Bin(¢)1 x (14 Bin(¢)2) x Bin(r)1 x Bin(r)2

[ = 1] = (1 + Bin(£)1) x Bin(£)2

In general, Bin(v)x can be written as a degree-2[log k| polynomial involving Bin(¢)
and Bin(r).



Lemma: Multiplication

Suppose P; cleanly computes f; into r; and P, cleanly computes f into r». Then we
can cleanly compute f; X f; into r3 as follows:

> Py
> r3<—mn—nxXnmn
> P
> r3i—rn+nXxXn
> Pt
> r3i—rn—nXxXn
> Pyt
> r3i—rn+nxn



Lemma: Multiplication

Suppose P; cleanly computes f; into r; and P, cleanly computes f into r». Then we
can cleanly compute f; X f; into r3 as follows:

> P [n=m+f,rn=m]
r3<—rn—nrn XxXnmn

P, [n=m+f,nr=m+0h]
rR<rn+rmnxn

-1

Py [n="11,n="m+0f]
r3<—mn—nXxXnmn

'Dz_1 [f12717f2:T2]

vVvvyVvVvVvyyypy

R<mr+nxXnmn



Lemma: d-ary multiplication

Suppose we have d values fi, ..., fy, and a general subroutine P. For any S C [d],
P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:
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P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:

» For every subset S C [d]:
» Call P(S’), choosing S" so that r; =7, for i ¢ S, and r; =7, + f; for i € S.
> rgp1 4 rge1+cs X H?:1 g

» Call P once moretoensure r; =71, fori=1,...,d.



Lemma: d-ary multiplication

Suppose we have d values fi, ..., fy, and a general subroutine P. For any S C [d],
P(S) cleanly computes r; < r; + f; for every i € S, and leaves r; alone for j ¢ S.
Then we can cleanly compute f; X --- X fg into ry41 as follows:

» For every subset S C [d]:
» Call P(S’), choosing S" so that r; =7, for i ¢ S, and r; =7, + f; for i € S.
> rgp1 4 rge1+cs X H?:1 g

» Call P once moretoensure r; =71, fori=1,...,d.

Uses d + 1 registers and 29 recursive calls.
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Algorithm
ComputeBin(v, S, ) Uses vector registers i € {0, 1} 18kl
Parameters: node v, set S C [log k], target register i
Computes: iy, < fip + Bin(v), forall be S
> If v is a leaf:
» i < fi + ComputeBin(v) is one instruction.
> else:
» for all subsets Ty, T C [log k]:

> Call ComputeBin(¢, T{,j) and ComputeBin(r, T3,;’).
> forall be S, (ri)p < (7)p + F(7,1}7)

ComputeBin uses 3log k bits of memory and makes 2 x 2298k = 242 recursive calls.
It gives branching program with width 23198k = k3 and length ©((2k)?"k°(1). Total
O(k?Mt0M) states.

Worse than pebbling, which uses ©((k + 1)) states.
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algorithm width length total states
One-hot 20(k) o(k%ah) >O(k+h)
Binary k3 k©(h) k©(h)

Hybrid 20(5557 k) 20(ah) ;O(1) 9Ot 5521 k)
Hybrid, a =1 20(k) 20(h) O(1) 2O (k+h)
Hybrid, a = log(k +1) | k() KOh) KO(h)

Hybrid, a = Iog(% +1)

o((% +1)°"

O((% +1)°")

Pebbling uses ©((k 4 1)") states. Hybrid is better when h = w(k*/®).
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Hybrid algorithm

The Hybrid encoding is broken into ﬁ blocks that are a bits long.
For example, with k =9,a = 2:

x | block 1 | block 2 | block 3 | full encoding
1]01 00 00 010000
2|10 00 00 100000
3111 00 00 110000
4100 01 00 000100
5100 10 00 001000
6 | 00 11 00 001100
7 100 00 01 000001
8100 00 10 000010
9100 00 11 000011

Each bit of Hybrid,(v) is a degree-2a polynomial in Hybrid,(¢) and Hybrid,(r).
Using this, we can build an algorithm that uses 3 registers with 23" 1 bits each and

makes 29(3) recursive calls at each level, for a total of 20(ah) ;O(1) layers.



Future work

» Improve the algorithm. (Better ways to compute d-ary products? We're not the
first to want them.)

» Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)
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