Borrowing memory that's being used: catalytic approaches to the Tree Evaluation Problem

James Cook, Ian Mertz

April 6, 2020

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds
New algorithm
Reversible computation
Solving TEP

Section 1

The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr, M. Braverman, R. Santhanam 2010]

New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]
The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds
New algorithm
Reversible computation
Solving TEP
$A C^{0}(6) \subseteq L \subseteq P \subseteq N P \subseteq P H$

$$
\mathrm{AC}^{0}(6) \subseteq \mathrm{L} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PH}
$$

We don't know whether $\mathrm{AC}^{0}(6)=\mathrm{PH}$.

$$
\mathrm{AC}^{0}(6) \subseteq \mathrm{L} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PH}
$$

We don't know whether $\mathrm{AC}^{0}(6)=\mathrm{PH}$.
$\mathrm{P}=$ "polynomial time": $O\left(n^{O(1)}\right)$ time.
$\mathrm{P}=$ "polynomial time": $O\left(n^{O(1)}\right)$ time.
$\mathrm{L}=$ "logarithmic space": $O(\log n)$ memory. $2^{O(\log n)}=n^{O(1)}$ configurations, so $\mathrm{L} \subseteq \mathrm{P}$.
$\mathrm{P}=$ "polynomial time" : $O\left(n^{O(1)}\right)$ time.
$\mathrm{L}=$ "logarithmic space": $O(\log n)$ memory. $2^{O(\log n)}=n^{O(1)}$ configurations, so $\mathrm{L} \subseteq \mathrm{P}$.

TEP $\in P$.
Goal: prove TEP $\notin \mathrm{L}$, so $\mathrm{L} \neq \mathrm{P}$.

The Tree Evaluation Problem

$$
\begin{aligned}
& \text { Parameters: } \\
& \text { height }=3 \\
& \mathrm{k}=3 \\
& \text { Input size: } \\
& n=\Theta\left(2^{h} k^{2} \log k\right) .
\end{aligned}
$$

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
 Reversible computation
 Solving TEP

A query is either a leaf or a cell in a table of an internal node.

A query is either a leaf or a cell in a table of an internal node.
A branching program is a directed graph of states. There are two kinds of state:

- query state: labelled with a query and has k outgoing edges labelled with the possible answers.
- final state: labelled with a number 1..k.

One state is the starting state.

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.

Pebbling game［Paterson Hewitt 1970］

Limited supply of pebbles（say，3）．
Two kinds of move：
－Move a pebble to a leaf．
－If a node＇s two children have pebbles，move a pebble to that node．
Goal：put a pebble on the root．

Theorem：h pebbles and $2^{h}-1$ steps are enough．
Corollary：A branching program with $2^{h} k^{h}$ states can solve TEP．

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.
Corollary: A branching program with $2^{h} k^{h}$ states can solve TEP.
Theorem: h pebbles are needed.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

- Move a pebble to a leaf.
- If a node's two children have pebbles, move a pebble to that node.
Goal: put a pebble on the root.

Theorem: h pebbles and $2^{h}-1$ steps are enough.
Corollary: A branching program with $2^{h} k^{h}$ states can solve TEP.
Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs $\Omega\left(k^{h}\right)$ states.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$.

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$. So, log space $=O(h+\log k)$ memory.

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$. So, log space $=O(h+\log k)$ memory.

If TEP $\in L$, then it can be solved by a family of branching programs with $2^{O(h+\log k)}=2^{O(h)} k^{O(1)}$ states.

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$. So, log space $=O(h+\log k)$ memory.

If TEP $\in L$, then it can be solved by a family of branching programs with $2^{O(h+\log k)}=2^{O(h)} k^{O(1)}$ states.

Pebbling algorithm (previous best):

- 2^{h} layers.
- Up to k^{h} states per layer.
- Total $\Theta\left((k+1)^{h}\right)$ states.

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$. So, log space $=O(h+\log k)$ memory.

If TEP $\in L$, then it can be solved by a family of branching programs with $2^{O(h+\log k)}=2^{O(h)} k^{O(1)}$ states.

Pebbling algorithm (previous best):

- 2^{h} layers.
- Up to k^{h} states per layer.
- Total $\Theta\left((k+1)^{h}\right)$ states.

New algorithm: $\left(\frac{k}{h}+1\right)^{\Theta(h)} k^{\Theta(1)}$ states. (Beats pebbling when $h \geq k^{4 / 5+\epsilon}$.)

Input size: $\Theta\left(2^{h} k^{2} \log k\right)$. So, log space $=O(h+\log k)$ memory.

If TEP $\in L$, then it can be solved by a family of branching programs with $2^{O(h+\log k)}=2^{O(h)} k^{O(1)}$ states.

Pebbling algorithm (previous best):

- 2^{h} layers.
- Up to k^{h} states per layer.
- Total $\Theta\left((k+1)^{h}\right)$ states.

New algorithm: $\left(\frac{k}{h}+1\right)^{\Theta(h)} k^{\Theta(1)}$ states. (Beats pebbling when $h \geq k^{4 / 5+\epsilon}$.)
Neither algorithm fits in $2^{O(h)} k^{O(1)}$ states, so TEP $\notin \mathrm{L}$ is still possible.

Lower bounds
Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

Lower bounds
Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

- the algorithm is read-once

Lower bounds
Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

- the algorithm is read-once
- or the algorithm is thrifty: never reads an irrelevent piece of the input.

Lower bounds
Solving TEP requires $\Omega\left(k^{h}\right)$ states (like the pebbling algorithm) if you assume...

- the algorithm is read-once
- or the algorithm is thrifty: never reads an irrelevent piece of the input.

New algorithm: $\left(\frac{k}{h}+1\right)^{\Theta(h)} k^{\Theta(1)} \notin \Omega\left(k^{h}\right)$.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].
Given:

- Small ordinary memory
- Large memory that must be returned to its original state

Result: with $O(\log n)$ ordinary memory and $n^{O(1)}$ extra memory, can compute things not known to be in L, e.g. matrix determinant, NL, ...

This rules out the following lower bound argument:

- At some point, you need to compute B.
- You need to remember B ($\log k$ bits) while computing C.
- So, every level of the tree adds $\log k$ bits you need to remember.

Bounded-width polynomial-size branching programs recognize exactly those languages in NC^{1}. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R. Cleve 1992]

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Ring R
Inputs $x_{1}, \ldots, x_{n} \in R$
Work registers $r_{1}, \ldots, r_{m} \in R$
Reversible instructions:

- Example: $r_{5} \leftarrow r_{5}+r_{4} \times x_{1}$.
- Inverse is $r_{5} \leftarrow r_{5}-r_{4} \times x_{1}$.

Notation: τ_{j} denotes the starting value of register r_{j}.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Invert the whole sequence by running the inverse of each instruction in reverse order. (Computes -f.)

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $j \neq i$)

Lemma

Suppose there is a sequence of ℓ instructions that cleanly computes f, and each instruction has the form:

$$
\left(r_{1}, \ldots, r_{m}\right) \leftarrow g\left(x_{j}, r_{1}, \ldots, r_{m}\right)
$$

Then there is a branching program that computes f with $\ell|R|^{m}$ states.

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :
$-r_{1} \leftarrow r_{1}+x_{1}$
$-r_{1} \leftarrow r_{1}+x_{2}$

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :
$-r_{1} \leftarrow r_{1}+x_{1}$
$\left[r_{1}=\tau_{1}+x_{1}\right]$

- $r_{1} \leftarrow r_{1}+x_{2}$

Definition

A sequence of reversible instructions cleanly computes f into r_{i} if, once it finishes:

- $r_{i}=\tau_{i}+f\left(x_{1}, \ldots, x_{n}\right)$
- all other registers are unchanged $\left(r_{j}=\tau_{j}\right.$ for $\left.j \neq i\right)$

Example

Cleanly compute $x_{1}+x_{2}$ into r_{1} :
$-r_{1} \leftarrow r_{1}+x_{1}$

$$
\left[r_{1}=\tau_{1}+x_{1}\right]
$$

- $r_{1} \leftarrow r_{1}+x_{2}$

$$
\left[r_{1}=\tau_{1}+x_{1}+x_{2}\right]
$$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$\rightarrow r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$

- P_{1}
$\rightarrow r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
$-P_{2}$
$\rightarrow r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$\rightarrow r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$

- P_{1}
$\rightarrow r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
$-P_{2}$
$\rightarrow r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$

- P_{1}
$\rightarrow r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
$-P_{2}$
$\rightarrow r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$

- P_{1}
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$

- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}-f_{1} \times \tau_{2}\right]$
- P_{2}
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$

- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}-f_{1} \times \tau_{2}\right]$
- $P_{2} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}+f_{2}\right]$
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}+\tau_{1} \times f_{2}+f_{1} \times f_{2}\right]$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

- $r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$
- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}-f_{1} \times \tau_{2}\right]$
- $P_{2} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}+f_{2}\right]$
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}+\tau_{1} \times f_{2}+f_{1} \times f_{2}\right]$
- $P_{1}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}+f_{2}\right]$
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+f_{1} \times f_{2}\right]$
- P_{2}^{-1}

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

- $r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$
- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}-f_{1} \times \tau_{2}\right]$
- $P_{2} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}+f_{2}\right]$
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}+\tau_{1} \times f_{2}+f_{1} \times f_{2}\right]$
- $P_{1}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}+f_{2}\right]$
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+f_{1} \times f_{2}\right]$
- $P_{2}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}\right]$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}\right]$

- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}-f_{1} \times \tau_{2}\right]$
- $P_{2} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}+f_{2}\right]$
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+\tau_{1} \times \tau_{2}+\tau_{1} \times f_{2}+f_{1} \times f_{2}\right]$
- $P_{1}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}+f_{2}\right]$
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2} \quad\left[r_{3}=\tau_{3}+f_{1} \times f_{2}\right]$
- $P_{2}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}\right]$

Cost: need to run P_{1} and P_{2} twice each. But: no memory needs to be reserved.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

A formula for TEP

$$
\text { Let } R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\} \text {. Define }[x=y]=1 \text { if } x=y, 0 \text { otherwise. }
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
[v=1]=
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
[v=1]=
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
\begin{aligned}
& {[v=1]=} \\
& {[\ell=2] \times[r=1]+[\ell=2] \times[r=2]+[\ell=1] \times[r=3]}
\end{aligned}
$$

A formula for TEP

Let $R=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. Define $[x=y]=1$ if $x=y, 0$ otherwise.
Suppose node v has children ℓ and r :

$$
\begin{aligned}
& {[v=1]=} \\
& {[\ell=2] \times[r=1]+[\ell=2] \times[r=2]+[\ell=1] \times[r=3]}
\end{aligned}
$$

Let f_{v} denote v 's table. In general,

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm
CheckNode (v, x, i)
Parameters: node v, value $x \in[k]$, target register i Computes $r_{i} \leftarrow r_{i}+[v=x]$

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm
CheckNode (v, x, i)
Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
$-r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm

CheckNode(v, x, i)
Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$
using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode($\left.r, z, j^{\prime}\right)$, where j and j^{\prime} are two registers other than i.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm

CheckNode(v, x, i)
Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$
using multiplication lemma: 2 calls each to $\operatorname{CheckNode}(\ell, y, j)$ and CheckNode $\left(r, z, j^{\prime}\right)$, where j and j^{\prime} are two registers other than i.

Needs three registers.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm

CheckNode(v, x, i)
Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$
using multiplication lemma: 2 calls each to $\operatorname{CheckNode~}(\ell, y, j)$ and CheckNode $\left(r, z, j^{\prime}\right)$, where j and j^{\prime} are two registers other than i.

Needs three registers. Gives branching program with width 8 and length $\left(k^{2}\right)^{h-1}$.

First attempt

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm

CheckNode (v, x, i)
Parameters: node v, value $x \in[k]$, target register i
Computes $r_{i} \leftarrow r_{i}+[v=x]$

- If v is a leaf:
- $r_{i} \leftarrow r_{i}+[v=x]$ is one instruction.
- else: for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$ using multiplication lemma: 2 calls each to CheckNode (ℓ, y, j) and CheckNode($\left.r, z, j^{\prime}\right)$, where j and j^{\prime} are two registers other than i.

Needs three registers. Gives branching program with width 8 and length $\left(k^{2}\right)^{h-1}$. Worse than pebbling, which uses $\Theta\left((k+1)^{h}\right)$ states.

- for $(y, z) \in[k]^{2}:$
- $r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$
- for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$

$$
\begin{aligned}
& r_{j} \leftarrow r_{j}+[\ell=1] \\
& r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
& r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=1] \\
& r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} \\
& r_{j} \leftarrow r_{j}-[\ell=1] \\
& r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
& r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=1] \\
& r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}}
\end{aligned}
$$

- for $(y, z) \in[k]^{2}$:
$-r_{i} \leftarrow r_{i}+\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]$

$$
\begin{array}{lll}
r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] & r_{j} \leftarrow r_{j}+[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}+[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} \\
r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] & r_{j} \leftarrow r_{j}-[\ell=1] \\
r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}-r_{j} \times r_{j^{\prime}} \\
r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=1] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=2] & r_{j^{\prime}} \leftarrow r_{j^{\prime}}-[r=3] \\
r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}} & r_{i} \leftarrow r_{i}+r_{j} \times r_{j^{\prime}}
\end{array}
$$

One-hot encoding

Given a value $x \in[k]$, define $\operatorname{OneHot}(x)=([x=1],[x=2], \ldots,[x=k]) \in\{0,1\}^{k}$. E.g. for $k=3$, $\operatorname{OneHot}(2)=(0,1,0)$.

Algorithm
ComputeOneHot $(v, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{k}$.
Parameters: node v, target register i
Computes $\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$

Algorithm
ComputeOneHot $(v, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{k}$.
Parameters: node v, target register i
Computes $\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$ is one instruction.

Algorithm

ComputeOneHot $(v, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{k}$.
Parameters: node v, target register i
Computes $\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$ is one instruction.
- else:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\vec{r}_{j} \leftarrow \vec{r}_{j}+\operatorname{OneHot}(\ell)$
$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\overrightarrow{r_{j^{\prime}}} \leftarrow \overrightarrow{r_{j^{\prime}}}+$ OneHot(r)
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\vec{r}_{j} \leftarrow \vec{r}_{j}-\operatorname{OneHot}(\ell)$
$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
$-\overrightarrow{r_{j^{\prime}}} \leftarrow \overrightarrow{r_{j^{\prime}}}$ - OneHot(r)

Algorithm

ComputeOneHot $(v, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{k}$.
Parameters: node v, target register i
Computes $\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$ is one instruction.
- else:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\vec{r}_{j} \leftarrow \vec{r}_{j}+\operatorname{OneHot}(\ell)$

$$
F\left(\overrightarrow{r_{j}}, \overrightarrow{r_{j^{\prime}}}\right)_{x}=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times\left(\overrightarrow{r_{j}}\right)_{y} \times\left(\overrightarrow{r_{j^{\prime}}}\right)_{z}
$$

$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \overrightarrow{r_{j^{\prime}}}\right)$

- $\overrightarrow{r^{\prime}} \leftarrow \overrightarrow{r_{j^{\prime}}}+$ OneHot(r)
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \overrightarrow{r_{j^{\prime}}}\right) \quad$ Note
- $\vec{r}_{j} \leftarrow \vec{r}_{j}-\operatorname{OneHot}(\ell)$
$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
$-\overrightarrow{r_{j^{\prime}}} \leftarrow \overrightarrow{r_{j^{\prime}}}$ - OneHot (r)

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Algorithm

ComputeOneHot $(v, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{k}$.
Parameters: node v, target register i
Computes $\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+\operatorname{OneHot}(v)$ is one instruction.
- else:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\vec{r}_{j} \leftarrow \vec{r}_{j}+\operatorname{OneHot}(\ell)$

$$
F\left(\overrightarrow{r_{j}}, \overrightarrow{r_{j^{\prime}}}\right)_{x}=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times\left(\overrightarrow{r_{j}}\right)_{y} \times\left(\overrightarrow{r_{j^{\prime}}}\right)_{z}
$$

$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$

- $\overrightarrow{r_{j^{\prime}}} \leftarrow \overrightarrow{r_{j^{\prime}}}+$ OneHot (r)
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right) \quad$ Note
- $\vec{r}_{j} \leftarrow \vec{r}_{j}-\operatorname{OneHot}(\ell)$
$-\vec{r}_{i} \leftarrow \vec{r}_{i}-F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$
- $\overrightarrow{r_{j^{\prime}}} \leftarrow \overrightarrow{r_{j^{\prime}}}$ - OneHot (r)

$$
[v=x]=\sum_{(y, z) \in[k]^{2}}\left[f_{v}(y, z)=x\right] \times[\ell=y] \times[r=z]
$$

Gives branching program with width $2^{3 k}$, length $\Theta\left(k^{2} 4^{h}\right)$. Total $2^{\Theta(k+h)}$ states.

Pebbling algorithm: $\Theta\left((k+1)^{h}\right)$ ComputeOneHot: $2^{\Theta(k+h)}$ states.

Pebbling algorithm: $\Theta\left((k+1)^{h}\right)=\Theta\left(2^{h \log _{2}(k+1)}\right)$
ComputeOneHot: $2^{\Theta(k+h)}$ states. Better when $h \log (k+1) \gg k+h$, i.e. when $h \gg \frac{k}{\log k}$.

Pebbling algorithm: $\Theta\left((k+1)^{h}\right)=\Theta\left(2^{h \log _{2}(k+1)}\right)$
ComputeOneHot: $2^{\Theta(k+h)}$ states. Better when $h \log (k+1) \gg k+h$, i.e. when $h \gg \frac{k}{\log k}$.

Can we do better?

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{[\log k\rceil}$ be its binary encoding. E.g. for $k=3, \operatorname{Bin}(1)=(0,1)$.

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding. E.g. for $k=3, \operatorname{Bin}(1)=(0,1)$.

$$
\operatorname{Bin}(v)_{1}=[v=2]+[v=3]=
$$

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding. E.g. for $k=3, \operatorname{Bin}(1)=(0,1)$.

$$
\operatorname{Bin}(v)_{1}=[v=2]+[v=3]=
$$

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding.

$$
\text { E.g. for } k=3, \operatorname{Bin}(1)=(0,1)
$$

$$
\begin{aligned}
& \operatorname{Bin}(v)_{1}=[v=2]+[v=3]= \\
& {[\ell=1] \times[r=1]+[\ell=1] \times[r=2]+[\ell=2] \times[r=3]}
\end{aligned}
$$

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding.

$$
\text { E.g. for } k=3, \operatorname{Bin}(1)=(0,1)
$$

$$
\begin{aligned}
& \operatorname{Bin}(v)_{1}=[v=2]+[v=3]= \\
& {[\ell=1] \times[r=1]+[\ell=1] \times[r=2]+[\ell=2] \times[r=3]} \\
& {[\ell=1]=\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2}}
\end{aligned}
$$

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding.
E.g. for $k=3, \operatorname{Bin}(1)=(0,1)$.

$$
\begin{aligned}
& \operatorname{Bin}(v)_{1}=[v=2]+[v=3]= \\
& {[\ell=1] \times[r=1]+[\ell=1] \times[r=2]+[\ell=2] \times[r=3]} \\
& =\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2} \times\left(1+\operatorname{Bin}(r)_{1}\right) \times \operatorname{Bin}(r)_{2} \\
& +\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2} \times \operatorname{Bin}(r)_{1} \times\left(1+\operatorname{Bin}(r)_{2}\right) \\
& +\operatorname{Bin}(\ell)_{1} \times\left(1+\operatorname{Bin}(\ell)_{2}\right) \times \operatorname{Bin}(r)_{1} \times \operatorname{Bin}(r)_{2} \\
& {[\ell=1]=\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2}}
\end{aligned}
$$

Binary encoding

Given a value $x \in[k]$, let $\operatorname{Bin}(x) \in\{0,1\}^{\lceil\log k\rceil}$ be its binary encoding.
E.g. for $k=3, \operatorname{Bin}(1)=(0,1)$.

$$
\begin{aligned}
& \operatorname{Bin}(v)_{1}=[v=2]+[v=3]= \\
& {[\ell=1] \times[r=1]+[\ell=1] \times[r=2]+[\ell=2] \times[r=3]} \\
& =\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2} \times\left(1+\operatorname{Bin}(r)_{1}\right) \times \operatorname{Bin}(r)_{2} \\
& +\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2} \times \operatorname{Bin}(r)_{1} \times\left(1+\operatorname{Bin}(r)_{2}\right) \\
& +\operatorname{Bin}(\ell)_{1} \times\left(1+\operatorname{Bin}(\ell)_{2}\right) \times \operatorname{Bin}(r)_{1} \times \operatorname{Bin}(r)_{2} \\
& {[\ell=1]=\left(1+\operatorname{Bin}(\ell)_{1}\right) \times \operatorname{Bin}(\ell)_{2}}
\end{aligned}
$$

In general, $\operatorname{Bin}(v)_{x}$ can be written as a degree- $2\lceil\log k\rceil$ polynomial involving $\operatorname{Bin}(\ell)$ and $\operatorname{Bin}(r)$.

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

- P_{1}
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}
- $r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
- P_{1}^{-1}
$-r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- P_{2}^{-1}
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$

Lemma: Multiplication

Suppose P_{1} cleanly computes f_{1} into r_{1} and P_{2} cleanly computes f_{2} into r_{2}. Then we can cleanly compute $f_{1} \times f_{2}$ into r_{3} as follows:

- $P_{1} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}\right]$
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- $P_{2} \quad\left[r_{1}=\tau_{1}+f_{1}, r_{2}=\tau_{2}+f_{2}\right]$
- $r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$
$-P_{1}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}+f_{2}\right]$
- $r_{3} \leftarrow r_{3}-r_{1} \times r_{2}$
- $P_{2}^{-1} \quad\left[r_{1}=\tau_{1}, r_{2}=\tau_{2}\right]$
$-r_{3} \leftarrow r_{3}+r_{1} \times r_{2}$

Lemma: d-ary multiplication

Suppose we have d values f_{1}, \ldots, f_{d}, and a general subroutine P. For any $S \subseteq[d]$, $P(S)$ cleanly computes $r_{i} \leftarrow r_{i}+f_{i}$ for every $i \in S$, and leaves r_{j} alone for $j \notin S$. Then we can cleanly compute $f_{1} \times \cdots \times f_{d}$ into r_{d+1} as follows:

Lemma: d-ary multiplication

Suppose we have d values f_{1}, \ldots, f_{d}, and a general subroutine P. For any $S \subseteq[d]$, $P(S)$ cleanly computes $r_{i} \leftarrow r_{i}+f_{i}$ for every $i \in S$, and leaves r_{j} alone for $j \notin S$. Then we can cleanly compute $f_{1} \times \cdots \times f_{d}$ into r_{d+1} as follows:

- For every subset $S \subseteq[d]$:
- Call $P\left(S^{\prime}\right)$, choosing S^{\prime} so that $r_{i}=\tau_{i}$ for $i \notin S$, and $r_{i}=\tau_{i}+f_{i}$ for $i \in S$.
- $r_{d+1} \leftarrow r_{d+1}+c_{S} \times \prod_{i=1}^{d} r_{i}$
- Call P once more to ensure $r_{i}=\tau_{i}$ for $i=1, \ldots, d$.

Lemma: d-ary multiplication

Suppose we have d values f_{1}, \ldots, f_{d}, and a general subroutine P. For any $S \subseteq[d]$, $P(S)$ cleanly computes $r_{i} \leftarrow r_{i}+f_{i}$ for every $i \in S$, and leaves r_{j} alone for $j \notin S$. Then we can cleanly compute $f_{1} \times \cdots \times f_{d}$ into r_{d+1} as follows:

- For every subset $S \subseteq[d]$:
- Call $P\left(S^{\prime}\right)$, choosing S^{\prime} so that $r_{i}=\tau_{i}$ for $i \notin S$, and $r_{i}=\tau_{i}+f_{i}$ for $i \in S$.
- $r_{d+1} \leftarrow r_{d+1}+c_{S} \times \prod_{i=1}^{d} r_{i}$
- Call P once more to ensure $r_{i}=\tau_{i}$ for $i=1, \ldots, d$.

Uses $d+1$ registers and 2^{d} recursive calls.

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{[\log k]}$.
Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{[\log k\rceil}$. Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

- If v is a leaf:
- $\vec{r}_{i} \leftarrow \vec{r}_{i}+$ Compute $\operatorname{Bin}(v)$ is one instruction.

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{\lceil\log k\rceil}$. Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+$ Compute $\operatorname{Bin}(v)$ is one instruction.
- else:
- for all subsets $T_{1}, T_{2} \subseteq[\log k]$:
- Call ComputeBin $\left(\ell, T_{1}^{\prime}, j\right)$ and ComputeBin $\left(r, T_{2}^{\prime}, j^{\prime}\right)$.
- for all $b \in S,\left(\vec{r}_{i}\right)_{b} \leftarrow\left(\vec{r}_{i}\right)_{b}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{\lceil\log k\rceil}$.
Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+$ Compute $\operatorname{Bin}(v)$ is one instruction.
- else:
- for all subsets $T_{1}, T_{2} \subseteq[\log k]$:
- Call ComputeBin $\left(\ell, T_{1}^{\prime}, j\right)$ and ComputeBin $\left(r, T_{2}^{\prime}, j^{\prime}\right)$.
- for all $b \in S,\left(\vec{r}_{i}\right)_{b} \leftarrow\left(\vec{r}_{i}\right)_{b}+F\left(\vec{r}_{j}, \vec{r}_{j^{\prime}}\right)$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k}=2 k^{2}$ recursive calls.

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{\lceil\log k\rceil}$.
Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+$ Compute $\operatorname{Bin}(v)$ is one instruction.
- else:
- for all subsets $T_{1}, T_{2} \subseteq[\log k]$:
- Call ComputeBin $\left(\ell, T_{1}^{\prime}, j\right)$ and ComputeBin $\left(r, T_{2}^{\prime}, j^{\prime}\right)$.
- for all $b \in S,\left(\vec{r}_{i}\right)_{b} \leftarrow\left(\vec{r}_{i}\right)_{b}+F\left(\overrightarrow{r_{j}}, \overrightarrow{r_{j^{\prime}}}\right)$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k}=2 k^{2}$ recursive calls. It gives branching program with width $2^{3 \log k}=k^{3}$ and length $\Theta\left((2 k)^{2 h} k^{O(1)}\right)$. Total $\Theta\left(k^{2 h+O(1)}\right)$ states.

Algorithm

ComputeBin $(v, S, i) \quad$ Uses vector registers $\vec{r}_{i} \in\{0,1\}^{\lceil\log k\rceil}$.
Parameters: node v, set $S \subseteq[\log k]$, target register i
Computes: $\vec{r}_{i b} \leftarrow \vec{r}_{i b}+\operatorname{Bin}(v)_{b}$ for all $b \in S$

- If v is a leaf:
$-\vec{r}_{i} \leftarrow \vec{r}_{i}+$ Compute $\operatorname{Bin}(v)$ is one instruction.
- else:
- for all subsets $T_{1}, T_{2} \subseteq[\log k]$:
- Call ComputeBin $\left(\ell, T_{1}^{\prime}, j\right)$ and ComputeBin $\left(r, T_{2}^{\prime}, j^{\prime}\right)$.
- for all $b \in S,\left(\vec{r}_{i}\right)_{b} \leftarrow\left(\vec{r}_{i}\right)_{b}+F\left(\overrightarrow{r_{j}}, \overrightarrow{r_{j^{\prime}}}\right)$

ComputeBin uses $3 \log k$ bits of memory and makes $2 \times 2^{2 \log k}=2 k^{2}$ recursive calls. It gives branching program with width $2^{3 \log k}=k^{3}$ and length $\Theta\left((2 k)^{2 h} k^{O(1)}\right)$. Total $\Theta\left(k^{2 h+O(1)}\right)$ states.
Worse than pebbling, which uses $\Theta\left((k+1)^{h}\right)$ states.

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta\left(\frac{a}{2^{a}-1} k\right)}$	$2^{\Theta(a h)} k^{\Theta(1)}$	$2^{\left.\Theta\left(a h+\frac{a}{2^{a}-1} k\right)\right)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta\left(\frac{a}{2^{a}-1} k\right)}$	$2^{\Theta(a h)} k^{\Theta(1)}$	$2^{\left.\Theta\left(a h+\frac{a}{2^{a}-1} k\right)\right)}$
Hybrid, $a=1$	$2^{\Theta(k)}$	$2^{\Theta(h)} k^{\Theta(1)}$	$2^{\Theta(k+h)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta\left(\frac{a}{2^{a}-1} k\right)}$	$2^{\Theta(a h)} k^{\Theta(1)}$	$2^{\left.\Theta\left(a h+\frac{a}{2^{a}-1} k\right)\right)}$
Hybrid, $a=1$	$2^{\Theta(k)}$	$2^{\Theta(h)} k^{\Theta(1)}$	$2^{\Theta(k+h)}$
Hybrid, $a=\log (k+1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta\left(\frac{a}{2^{a}-1} k\right)}$	$2^{\Theta(a h)} k^{\Theta(1)}$	$2^{\left.\Theta\left(a h+\frac{a}{2^{a}-1} k\right)\right)}$
Hybrid, $a=1$	$2^{\Theta(k)}$	$2^{\Theta(h)} k^{\Theta(1)}$	$2^{\Theta(k+h)}$
Hybrid, $a=\log (k+1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid, $a=\log \left(\frac{k}{h}+1\right)$	$\Theta\left(\left(\frac{k}{h}+1\right)^{\Theta(h)}\right.$	$\Theta\left(\left(\frac{k}{h}+1\right)^{\Theta(h)}\right)$	$\left(\frac{k}{h}+1\right)^{5 h} k^{\Theta(1)}$

algorithm	width	length	total states
One-hot	$2^{\Theta(k)}$	$\Theta\left(k^{2} 4^{h}\right)$	$2^{\Theta(k+h)}$
Binary	k^{3}	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid	$2^{\Theta\left(\frac{a}{2^{a}-1} k\right)}$	$2^{\Theta(a h)} k^{\Theta(1)}$	$2^{\left.\Theta\left(a h+\frac{a}{2^{a}-1} k\right)\right)}$
Hybrid, $a=1$	$2^{\Theta(k)}$	$2^{\Theta(h)} k^{\Theta(1)}$	$2^{\Theta(k+h)}$
Hybrid, $a=\log (k+1)$	$k^{\Theta(1)}$	$k^{\Theta(h)}$	$k^{\Theta(h)}$
Hybrid, $a=\log \left(\frac{k}{h}+1\right)$	$\Theta\left(\left(\frac{k}{h}+1\right)^{\Theta(h)}\right.$	$\Theta\left(\left(\frac{k}{h}+1\right)^{\Theta(h)}\right)$	$\left(\frac{k}{h}+1\right)^{5 h} k^{\Theta(1)}$

Pebbling uses $\Theta\left((k+1)^{h}\right)$ states. Hybrid is better when $h=\omega\left(k^{4 / 5}\right)$.

Hybrid algorithm

The Hybrid encoding is broken into $\frac{k}{2^{a}-1}$ blocks that are a bits long.

Hybrid algorithm

The Hybrid encoding is broken into $\frac{k}{2^{a}-1}$ blocks that are a bits long. For example, with $k=9, a=2$:

x	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

Hybrid algorithm

The Hybrid encoding is broken into $\frac{k}{2^{a}-1}$ blocks that are a bits long.
For example, with $k=9, a=2$:

x	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

Each bit of $\operatorname{Hybrid}_{a}(v)$ is a degree-2a polynomial in $\operatorname{Hybrid}_{a}(\ell)$ and $\operatorname{Hybrid}_{a}(r)$.

Hybrid algorithm

The Hybrid encoding is broken into $\frac{k}{2^{a}-1}$ blocks that are a bits long.
For example, with $k=9, a=2$:

x	block 1	block 2	block 3	full encoding
1	01	00	00	010000
2	10	00	00	100000
3	11	00	00	110000
4	00	01	00	000100
5	00	10	00	001000
6	00	11	00	001100
7	00	00	01	000001
8	00	00	10	000010
9	00	00	11	000011

Each bit of $\operatorname{Hybrid}_{a}(v)$ is a degree-2a polynomial in $\operatorname{Hybrid}_{a}(\ell)$ and $\operatorname{Hybrid}_{a}(r)$.
Using this, we can build an algorithm that uses 3 registers with $\frac{k a}{2^{a}-1}$ bits each and makes $2^{\Theta(a)}$ recursive calls at each level, for a total of $2^{\Theta(a h)} k^{\Theta(1)}$ layers.

Future work

- Improve the algorithm. (Better ways to compute d-ary products? We're not the first to want them.)
- Find new TEP lower bounds that apply to these algorithms. (Old lower bounds apply only to read-once or "thrifty" algorithms.)

