
Borrowing memory that’s being used: catalytic approaches to
the Tree Evaluation Problem

James Cook, Ian Mertz

April 6, 2020

Section 1

The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Section 1

The Tree Evaluation Problem

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

AC0(6) ⊆ L ⊆ P ⊆ NP ⊆ PH

We don’t know whether AC0(6) = PH.

AC0(6) ⊆ L ⊆ P ⊆ NP ⊆ PH

We don’t know whether AC0(6) = PH.

AC0(6) ⊆ L ⊆ P ⊆ NP ⊆ PH

We don’t know whether AC0(6) = PH.

P = “polynomial time”: O(nO(1)) time.

L = “logarithmic space”: O(log n) memory.
2O(log n) = nO(1) configurations, so L ⊆ P.

TEP ∈ P.
Goal: prove TEP 6∈ L, so L 6= P.

P = “polynomial time”: O(nO(1)) time.

L = “logarithmic space”: O(log n) memory.
2O(log n) = nO(1) configurations, so L ⊆ P.

TEP ∈ P.
Goal: prove TEP 6∈ L, so L 6= P.

P = “polynomial time”: O(nO(1)) time.

L = “logarithmic space”: O(log n) memory.
2O(log n) = nO(1) configurations, so L ⊆ P.

TEP ∈ P.
Goal: prove TEP 6∈ L, so L 6= P.

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem

1

1

3

3

1

2

1

2

1

2

3

3

3

1

1

2

2

2

1

2

3

1

2

2

3

2

2

1

3

3

3 1 2 2

Parameters:

I height = 3

I k = 3

Input size:
n = Θ(2hk2 log k).

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

A query is either a leaf or a cell in a table of an internal node.

A branching program is a directed graph of states. There are two kinds of state:

I query state: labelled with a query and has k outgoing edges labelled with the
possible answers.

I final state: labelled with a number 1..k .

One state is the starting state.

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).

Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.

Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.

Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

Pebbling game [Paterson Hewitt 1970]

Limited supply of pebbles (say, 3).
Two kinds of move:

I Move a pebble to a leaf.

I If a node’s two children have pebbles, move a
pebble to that node.

Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Input size: Θ(2hk2 log k).

So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Input size: Θ(2hk2 log k). So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Input size: Θ(2hk2 log k). So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Input size: Θ(2hk2 log k). So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Input size: Θ(2hk2 log k). So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Input size: Θ(2hk2 log k). So, log space = O(h + log k) memory.

1
1

3

3
1

2

1
2

1

3
3

3

1
1

2

2
2

1 3
1

2

2
3

2

2
1

3

3 1 2 2

If TEP ∈ L, then it can be solved by a family of branching programs with
2O(h+log k) = 2O(h)kO(1) states.

Pebbling algorithm (previous best):

I 2h layers.

I Up to kh states per layer.

I Total Θ((k + 1)h) states.

New algorithm: (kh + 1)Θ(h)kΘ(1) states. (Beats pebbling when h ≥ k4/5+ε.)

Neither algorithm fits in 2O(h)kO(1) states, so TEP 6∈ L is still possible.

Lower bounds
Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

Lower bounds
Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

Lower bounds
Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

1

1

3

3

1

2

1

2

1X

X

X

X

X

X

X

X

3 2

Lower bounds
Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.

New algorithm: (kh + 1)Θ(h)kΘ(1) 6∈ Ω(kh).

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.

Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Lemma
Suppose there is a sequence of ` instructions that cleanly computes f , and each
instruction has the form:

(r1, . . . , rm)← g(xj , r1, . . . , rm)

Then there is a branching program that computes f with `|R|m states.

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

[r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]

Definition
A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1 [r1 = τ1 + x1]

I r1 ← r1 + x2 [r1 = τ1 + x1 + x2]

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

[r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2 [r3 = τ3 − f1 × τ2]

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

[r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2 [r3 = τ3 − f1 × τ2]

I P2 [r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

[r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2 [r3 = τ3 − f1 × τ2]

I P2 [r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1 [r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2 [r3 = τ3 + f1 × f2]

I P−1
2

[r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2 [r3 = τ3 − f1 × τ2]

I P2 [r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1 [r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2 [r3 = τ3 + f1 × f2]

I P−1
2 [r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2]

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2 [r3 = τ3 − f1 × τ2]

I P2 [r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2 [r3 = τ3 + τ1 × τ2 + τ1 × f2 + f1 × f2]

I P−1
1 [r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2 [r3 = τ3 + f1 × f2]

I P−1
2 [r1 = τ1, r2 = τ2]

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.

The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm
Reversible computation
Solving TEP

A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.
Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.
Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =

[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.
Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

A formula for TEP

Let R = Z/2Z = {0, 1}. Define [x = y] = 1 if x = y , 0 otherwise.
Suppose node v has children ` and r :

3

3

3

1

1

2

2

2

1

1

2

3

1

2

3

` r

[v = 1] =
[` = 2]× [r = 1]+[` = 2]× [r = 2]+[` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]

I If v is a leaf:
I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]
I If v is a leaf:

I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]
I If v is a leaf:

I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]
I If v is a leaf:

I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers.

Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]
I If v is a leaf:

I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.

Worse than pebbling, which uses Θ((k + 1)h) states.

First attempt

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Algorithm

CheckNode(v , x , i)
Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x]
I If v is a leaf:

I ri ← ri + [v = x] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

using multiplication lemma: 2 calls each to CheckNode(`, y , j) and
CheckNode(r , z , j ′), where j and j ′ are two registers other than i .

Needs three registers. Gives branching program with width 8 and length (k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

I for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x]× [` = y]× [r = z]

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 1]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 1]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 2]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 2]

ri ← ri + rj × rj ′

rj ← rj + [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ + [r = 3]

ri ← ri + rj × rj ′

rj ← rj − [` = 1]

ri ← ri − rj × rj ′

rj ′ ← rj ′ − [r = 3]

ri ← ri + rj × rj ′

. . .

. . .

. . .

One-hot encoding

Given a value x ∈ [k], define OneHot(x) = ([x = 1], [x = 2], . . . , [x = k]) ∈ {0, 1}k .

E.g. for k = 3, OneHot(2) = (0, 1, 0).

Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)

I If v is a leaf:
I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× (~rj)y × (~rj ′)z

Note:

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.

Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)
I If v is a leaf:

I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× (~rj)y × (~rj ′)z

Note:

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.

Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)
I If v is a leaf:

I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× (~rj)y × (~rj ′)z

Note:

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.

Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)
I If v is a leaf:

I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× (~rj)y × (~rj ′)z

Note:

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.

Algorithm

ComputeOneHot(v , i) Uses vector registers ~ri ∈ {0, 1}k .
Parameters: node v , target register i
Computes ~ri ← ~ri + OneHot(v)
I If v is a leaf:

I ~ri ← ~ri + OneHot(v) is one instruction.

I else:
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj + OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ + OneHot(r)
I ~ri ← ~ri + F (~rj , ~rj′)
I ~rj ← ~rj − OneHot(`)
I ~ri ← ~ri − F (~rj , ~rj′)
I ~rj′ ← ~rj′ − OneHot(r)

F (~rj , ~rj ′)x =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× (~rj)y × (~rj ′)z

Note:

[v = x] =
∑

(y ,z)∈[k]2

[fv (y , z) = x]× [` = y]× [r = z]

Gives branching program with width 23k , length Θ(k24h). Total 2Θ(k+h) states.

Pebbling algorithm: Θ((k + 1)h)

= Θ(2h log2(k+1))

ComputeOneHot: 2Θ(k+h) states.

Better when h log(k + 1) >> k + h, i.e. when

h >>
k

log k
.

Can we do better?

Pebbling algorithm: Θ((k + 1)h) = Θ(2h log2(k+1))
ComputeOneHot: 2Θ(k+h) states. Better when h log(k + 1) >> k + h, i.e. when

h >>
k

log k
.

Can we do better?

Pebbling algorithm: Θ((k + 1)h) = Θ(2h log2(k+1))
ComputeOneHot: 2Θ(k+h) states. Better when h log(k + 1) >> k + h, i.e. when

h >>
k

log k
.

Can we do better?

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =

[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =

[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]

= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]
= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Binary encoding

Given a value x ∈ [k], let Bin(x) ∈ {0, 1}dlog ke be its binary encoding.

E.g. for k = 3, Bin(1) = (0, 1).

3

3

1

1

1

2

1

1

1

1

2

3

1

2

3

` r

Bin(v)1 = [v = 2] + [v = 3] =
[` = 1]× [r = 1]+[` = 1]× [r = 2]+[` = 2]× [r = 3]
= (1 + Bin(`)1)× Bin(`)2 × (1 + Bin(r)1)× Bin(r)2

+(1 + Bin(`)1)× Bin(`)2 × Bin(r)1 × (1 + Bin(r)2)
+ Bin(`)1 × (1 + Bin(`)2)× Bin(r)1 × Bin(r)2

[` = 1] = (1 + Bin(`)1)× Bin(`)2

In general, Bin(v)x can be written as a degree-2dlog ke polynomial involving Bin(`)
and Bin(r).

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I P1

[r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

I P2

[r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

I P−1
1

[r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

I P−1
2

[r1 = τ1, r2 = τ2]

I r3 ← r3 + r1 × r2

Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

I P1 [r1 = τ1 + f1, r2 = τ2]

I r3 ← r3 − r1 × r2

I P2 [r1 = τ1 + f1, r2 = τ2 + f2]

I r3 ← r3 + r1 × r2

I P−1
1 [r1 = τ1, r2 = τ2 + f2]

I r3 ← r3 − r1 × r2

I P−1
2 [r1 = τ1, r2 = τ2]

I r3 ← r3 + r1 × r2

Lemma: d-ary multiplication

Suppose we have d values f1, . . . , fd , and a general subroutine P. For any S ⊆ [d],
P(S) cleanly computes ri ← ri + fi for every i ∈ S , and leaves rj alone for j 6∈ S .
Then we can cleanly compute f1 × · · · × fd into rd+1 as follows:

I For every subset S ⊆ [d]:
I Call P(S ′), choosing S ′ so that ri = τi for i 6∈ S , and ri = τi + fi for i ∈ S .
I rd+1 ← rd+1 + cS ×

∏d
i=1 ri

I Call P once more to ensure ri = τi for i = 1, . . . , d .

Uses d + 1 registers and 2d recursive calls.

Lemma: d-ary multiplication

Suppose we have d values f1, . . . , fd , and a general subroutine P. For any S ⊆ [d],
P(S) cleanly computes ri ← ri + fi for every i ∈ S , and leaves rj alone for j 6∈ S .
Then we can cleanly compute f1 × · · · × fd into rd+1 as follows:

I For every subset S ⊆ [d]:
I Call P(S ′), choosing S ′ so that ri = τi for i 6∈ S , and ri = τi + fi for i ∈ S .
I rd+1 ← rd+1 + cS ×

∏d
i=1 ri

I Call P once more to ensure ri = τi for i = 1, . . . , d .

Uses d + 1 registers and 2d recursive calls.

Lemma: d-ary multiplication

Suppose we have d values f1, . . . , fd , and a general subroutine P. For any S ⊆ [d],
P(S) cleanly computes ri ← ri + fi for every i ∈ S , and leaves rj alone for j 6∈ S .
Then we can cleanly compute f1 × · · · × fd into rd+1 as follows:

I For every subset S ⊆ [d]:
I Call P(S ′), choosing S ′ so that ri = τi for i 6∈ S , and ri = τi + fi for i ∈ S .
I rd+1 ← rd+1 + cS ×

∏d
i=1 ri

I Call P once more to ensure ri = τi for i = 1, . . . , d .

Uses d + 1 registers and 2d recursive calls.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S

I If v is a leaf:
I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.

It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.

Worse than pebbling, which uses Θ((k + 1)h) states.

Algorithm

ComputeBin(v ,S , i) Uses vector registers ~ri ∈ {0, 1}dlog ke.
Parameters: node v , set S ⊆ [log k], target register i
Computes: ~ri b ← ~ri b + Bin(v)b for all b ∈ S
I If v is a leaf:

I ~ri ← ~ri + ComputeBin(v) is one instruction.

I else:
I for all subsets T1,T2 ⊆ [log k]:

I Call ComputeBin(`,T ′
1, j) and ComputeBin(r ,T ′

2, j
′).

I for all b ∈ S , (~ri)b ← (~ri)b + F (~rj , ~rj′)

ComputeBin uses 3 log k bits of memory and makes 2× 22 log k = 2k2 recursive calls.
It gives branching program with width 23 log k = k3 and length Θ((2k)2hkO(1)). Total
Θ(k2h+O(1)) states.
Worse than pebbling, which uses Θ((k + 1)h) states.

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

algorithm width length total states

One-hot 2Θ(k) Θ(k24h) 2Θ(k+h)

Binary k3 kΘ(h) kΘ(h)

Hybrid 2
Θ(

a
2a−1k)

2Θ(ah)kΘ(1) 2
Θ(ah+

a
2a−1k))

Hybrid, a = 1 2Θ(k) 2Θ(h)kΘ(1) 2Θ(k+h)

Hybrid, a = log(k + 1) kΘ(1) kΘ(h) kΘ(h)

Hybrid, a = log(kh + 1) Θ((kh + 1)Θ(h) Θ((kh + 1)Θ(h)) (kh + 1)5hkΘ(1)

Pebbling uses Θ((k + 1)h) states. Hybrid is better when h = ω(k4/5).

Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011

Each bit of Hybrida(v) is a degree-2a polynomial in Hybrida(`) and Hybrida(r).
Using this, we can build an algorithm that uses 3 registers with ka

2a−1 bits each and

makes 2Θ(a) recursive calls at each level, for a total of 2Θ(ah)kΘ(1) layers.

Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011

Each bit of Hybrida(v) is a degree-2a polynomial in Hybrida(`) and Hybrida(r).
Using this, we can build an algorithm that uses 3 registers with ka

2a−1 bits each and

makes 2Θ(a) recursive calls at each level, for a total of 2Θ(ah)kΘ(1) layers.

Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011

Each bit of Hybrida(v) is a degree-2a polynomial in Hybrida(`) and Hybrida(r).

Using this, we can build an algorithm that uses 3 registers with ka
2a−1 bits each and

makes 2Θ(a) recursive calls at each level, for a total of 2Θ(ah)kΘ(1) layers.

Hybrid algorithm

The Hybrid encoding is broken into k
2a−1 blocks that are a bits long.

For example, with k = 9, a = 2:
x block 1 block 2 block 3 full encoding

1 01 00 00 010000
2 10 00 00 100000
3 11 00 00 110000
4 00 01 00 000100
5 00 10 00 001000
6 00 11 00 001100
7 00 00 01 000001
8 00 00 10 000010
9 00 00 11 000011

Each bit of Hybrida(v) is a degree-2a polynomial in Hybrida(`) and Hybrida(r).
Using this, we can build an algorithm that uses 3 registers with ka

2a−1 bits each and

makes 2Θ(a) recursive calls at each level, for a total of 2Θ(ah)kΘ(1) layers.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)

	The Tree Evaluation Problem
	Motivation and definition
	Branching programs and pebbling games
	Lower bounds

	New algorithm
	Reversible computation
	Solving TEP

