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Catalytic approaches to the Tree Evaluation Problem

Hello from Toronto, Canada!
This video is an overview of a paper by Ian Mertz and myself, about a
new space-efficient algorithm for the Tree Evaluation Problem.
The video is divided into two parts.
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Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Motivation and definition

In the first part, I’ll talk about the Tree Evaluation problem. It was
introduced in an attempt to separate complexity classes: the problem can
easily be solved in polynomial time, but it seems impossible to solve in
low-memory classes like log space.
In the second part, I’ll show you a new algorithm for solving this problem
with limited memory. This algorithm gives the first space improvement
since the problem was originally introduced ten years ago, and it makes
use of some techniques for re-using memory using reversible
computations.
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The Tree Evaluation Problem

Motivation and definition

The first part is older work mostly done by other people.
It’s based on a couple of papers from 2010 that introduced the problem.
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The Tree Evaluation Problem

Motivation and definition

I’ll start by describing the problem and its motivation. Then I’ll talk
about a couple of abstractions we use to analyse it, called branching
programs and pebbling games. And finally, before I move on the new
algorithm, I’ll talk about some lower bounds that the our algorithm had
to work around.



The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]



The Tree Evaluation Problem
Motivation and definition
Branching programs and pebbling games
Lower bounds

New algorithm

Pebbles and Branching Programs for Tree Evaluation [S. Cook, P. McKenzie, D. Wehr,
M. Braverman, R. Santhanam 2010]
New Results for Tree Evaluation [S. Chan, J. Cook, S. Cook, P. Nguyen, D. Wehr 2010]

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
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Motivation and definition

So, let’s start with the motivation.



The Tree Evaluation Problem (TEP)
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Conjecture

TEP 6∈ L
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The Tree Evaluation Problem

Motivation and definition
The Tree Evaluation Problem (TEP)

The Tree Evaluation Problem, or TEP for short is easy to solve in
polynomial time, but it’s conjectured that you can’t solve it in log space.
The goal is to prove this conjecture, implying that L is not equal to P.
In fact, the gap it aims to close is a little narrower than that: it’s in log
CFL but conjectured not to be in NL. But we’ll just focus on P and L in
this video.
So, that’s the motivation. Now let’s talk about what this problem
actually is.
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Motivation and definition
The Tree Evaluation Problem (TEP)

The input to the Tree Evaluation Problem is a complete binary tree with
some information attached to each node. Each leaf has a number
attached to it — in this case, 3, 1, 2 and 2 — and each internal node has
a table of numbers.
Given that input, we’re going to recursively define a single number at
each node, called the value of the node.
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Motivation and definition
The Tree Evaluation Problem (TEP)

The values of the leaves are already part of the input.
To compute the value of an internal node, we need to first know the
values of its children.
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Motivation and definition
The Tree Evaluation Problem (TEP)

For example, let’s look at the left child of the root. The values of its two
children tell us where to look in its table. In this case, we look at row
three, column one, and we find the number two.
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Motivation and definition
The Tree Evaluation Problem (TEP)

Similarly, we look up row two column two of the node on the right, and

find the number three.
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Motivation and definition
The Tree Evaluation Problem (TEP)

Finally, the numbers two and three tell us where to look in the root node,

and we find the number two.
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The Tree Evaluation Problem (TEP)

The output of the Tree Evaluation Problem is the value at the root.
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Motivation and definition
The Tree Evaluation Problem (TEP)

There are two parameters to this problem. The first is the height of the
tree. Three in this case. The second parameter is k, which is the range of
the numbers at the nodes. In this case it’s also three, meaning every
number is between one and three, and the tables are all three by three.
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Motivation and definition
The Tree Evaluation Problem (TEP)

The size of the input to TEP is on the order of two to the h internal
nodes, times k squared numbers stored in each node, times log k bits to
store each number.
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Motivation and definition

Using this formula for the input size, we can rephrase the conjecture I
showed you earlier.
Saying TEP is not in L is the same as saying it can’t be solved in big oh
of h plus log k space.
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Branching programs and pebbling games

Now that I’ve defined the Tree Evaluation Problem, I want to talk about
algorithms for solving it. I’ll start by describing branching programs,
which are the computational model we’re using. Then I’ll talk about an
abstraction called a pebbling game which can be useful for both upper
and lower bounds.
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Branching programs and pebbling games

So, here’s our TEP input again. I’ll define a query to be any piece of that
input we might want to read.
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Branching programs and pebbling games

Specifically, a query is either a leaf, meaning we want to read the input at
that leaf, or it’s a particular cell in one of the tables in an internal node.
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Branching programs and pebbling games

A branching program is a directed graph, where the nodes are called
states. There are two kinds of state.
A query state is labelled with a query, and has k outgoing edges: the
edge you follow depends on the answer to the query.
The other kind is a final state. When you get to one of those, the
computation stops, and you output whatever the state is labelled with.
One of the states is marked as the starting state, where computation
begins.
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Branching programs and pebbling games

Let’s return to our lower bound conjecture. We’ve written it as: TEP
can’t be solved in big oh of h plus log k space.
Any Turing machine can be transformed into a uniform family of
branching programs, with one state for each possible configuration.
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Branching programs and pebbling games

So, we can rephrase our conjecture one more time: TEP can’t be solved
by a uniform family of branching programs with only two to the order h
times a polynomial in k states. We could also state the conjecture
without the uniformity condition.

Now, let’s look at an example of a branching program for solving TEP.

To keep it small, we’ll set both the height and the alphabet size to 2.



A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C



A11

A12

A21

A22

B C

1

2

1

1

2 2

Bstart

C

C

A11

A12

A21

A22

output: 1

output: 2

1

2

1

2

1

2

1
2
1
2
1
2
1
2

remember B remember B, C

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

When both h and k are two, an input to TEP is structured like this.
There are six things we can query: the four cells in the root node A’s
table, and the two leaves B and C.
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Here’s a branching program that solves it. It’s organized into layers going
from left to right.
The starting state queries the first leaf, B. Depending on the answer, we
end up in one of the two states in the next layer. Those states query the
other leaf C, and depending on the answer, we end up in one of four
possible states in the third layer. Each node in the third layer queries a
different cell in the root node’s table, and depending on the answer, we
output 1 or 2.
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Here’s an example input. Let’s see what the computation looks like.
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Branching programs and pebbling games

Both the leaves are 2, so we end up at the node that queries A22. Then
the value is 1, so we output 1.
One thing to notice here is that every layer remembers a different set of
information.
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Branching programs and pebbling games

In the second layer, we remember node B, and in the third layer, we
remember both B and C. All the lower bounds we have so far for TEP
involve arguments about how many things the branching program needs
to remember at once.
One way to model this idea of remembering things is pebbling games.
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I If a node’s two children have pebbles, move a
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Goal: put a pebble on the root.

Theorem: h pebbles and 2h − 1 steps are enough.
Corollary: A branching program with 2hkh states can solve TEP.

Theorem: h pebbles are needed.
Conjecture (false): To solve TEP, a branching program needs Ω(kh) states.
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Pebbling games were first defined by Paterson and Hewitt in 1970. In the
context of the Tree Evaluation Problem, they work like this. Suppose we
have a complete binary tree of height h.
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Three in this case.
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Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

You have some limited number of pebbles. Let’s say it’s also three. They
all start in your hand. You’re allowed two kinds of move.
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Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

First, you can move one of your pebbles to a leaf of the tree. And
second, if a node’s two children both have pebbles on them, you can
move one of your pebbles to that node. The goal is to place a pebble on
the root node.
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Here’s a sequence of moves that does this. We start with the leaves and

work our way up.
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We’ve succeeded, because there’s now a pebble on the root node. The
important question is: how many pebbles do we need? In this case we
had three pebbles, and it was enough.
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Branching programs and pebbling games
Pebbling game [Paterson Hewitt 1970]

In general, you can solve this game with h pebbles, where h is the height
of the tree, using a simple recursive algorithm. The algorithm visits each
node once, so that’s two to the h minus one steps.
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Pebbling game [Paterson Hewitt 1970]

A corollary of that is that we can build a branching program that solves
the tree evaluation problem using two to the h times k to the h states.
Each step of the game translates into a layer of the branching program,
and the placement of the pebbles determines which values the program is
remembering. Since our strategy uses at most h pebbles at a time, the
program will only need to remember at most h values at once, which
requires k to the power h states in a single layer.
Now, the pebbling strategy is tight: if you only have h-1 pebbles, no
sequence of legal moves can put one on the root.
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The proof of that is not as obvious. I’ll leave it as an exercise. Now, it
would be nice if we could make a corresponding corollary.
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Since we need at least h pebbles, maybe we can prove that the tree
evaluation problem needs at least on the order of k to the h states. We’ll
see in a moment that this would imply that log space is not equal to
polytime.
For a long time, nobody could come up with any algorithm that did
better, so this conjecture seemed quite plausible.
The algorithm I’ll present later is the first counterexample.
Let’s take a look at where we are.
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TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(kh ))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.



Conjecture (TEP 6∈ L)

TEP can’t be solved by a uniform family of branching programs with 2O(h)kO(1) states.

Algorithm (pebbling)

The pebbling algorithm uses Θ((k + 1)h) states.

Conjecture (false)

A branching program for TEP requires Ω(kh) states.

Algorithm (new)

Our new algorithm uses (O(kh ))2h+εkΘ(1) states.

New algorithm defeats Ω(kh) conjecture when h ≥ k1/2+ε′ , but is still not log space.

2
0
2
1
-1
0
-2
6

Catalytic approaches to the Tree Evaluation Problem
The Tree Evaluation Problem

Branching programs and pebbling games

We started with this conjecture that TEP is not in L, meaning two to the
order h times poly k states isn’t enough.
We saw our first algorithm. If you analyse it carefully, it turns out the
pebbling algorithm uses on the order of k plus one to the power h states.
And the pebbling framework led to a conjuctered lower bound of k to the
h.
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The new algorithm I’m going to show you has on the order of k over h to
the power two h plus an arbitrarily small constant times a polynomial in k
states.
This defeats the conjectured lower bound of k to the h whenever h is not
too small compared to k. Specifically, if h is k to a power bigger than one
half, this algorithm is an asymptotic improvement.
But, it’s still not a log space algorithm, so the door is still open to using
TEP as a way to separate L from P.
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Lower bounds

Now, I want to briefly mention some existing lower bounds for TEP, to
give you an idea of why we found this new algorithm surprising.



Lower bounds

Solving TEP requires Ω(kh) states (like the pebbling algorithm) if you assume. . .

I the algorithm is read-once

I or the algorithm is thrifty: never reads an irrelevent piece of the input.
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Lower bounds

It turns out that under some pretty reasonable-sounding assumptions,
you can prove that the pebbling algorithm is essentially the best possible.
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Lower bounds

You can prove it if you assume the algorithm is read-once. That means
that once the algorithm reads a certain piece of the input, it is not
allowed to read it again.
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Lower bounds

Another assumption we can make instead is that the algorithm is thrifty.
This means that the algorithm never reads an irrelevant piece of the
input. For example, if an internal node’s left child has value three and its
right child has value 2, then it’s only allowed to read the entry at position
three two in that node’s table, since none of the other entries matter.
Our new algorithm beats this lower bound of k to the h, so, as you may
have already inferred, it’s not read-once or thrifty. Our algorithm is
actually going to read every piece of the input several times. I’ve said a
lot of mysterious things about the algorithm, so maybe it’s time I told
you how it works.
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Reversible computation

This part of the video has two pieces.

I’ll begin with some techniques we use related to reversible computation,

and then I’ll tell you how we apply them to solve TEP.
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Reversible computation

The first thing I want to tell you about is a paper that caught our
attention, and showed us that reversible computation is something we
should be looking at.



Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.
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Reversible computation
Catalytic space

The paper is from 2014, and it’s called Computing with a full memory:
catalytic space.
The idea is that you’re given a small amount of ordinary memory to work
with, and a much larger amount of extra memory. The catch with the
extra memory is that it starts out filled with data, possibly
incompressible, and once you’re done with your computation, you need to
return it back the way it was.
Surprisingly, the authors found that the extra memory seems to help.



Catalytic space

Computing with a full memory: catalytic space [BCKLS 2014].

Given:

I Small ordinary memory

I Large memory that must be returned to its original state

Result: with O(log n) ordinary memory and nO(1) extra memory, can compute things
not known to be in L, e.g. matrix determinant, NL, . . .

A

B

...
...

C

...
...

This rules out the following lower bound argument:

I At some point, you need to compute B.

I You need to remember B (log k bits) while computing C.

I So, every level of the tree adds log k bits you need to
remember.
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With only a logarithmic amount of ordinary memory but a polynomial
amount of borrowed memory, you can compute many things not known
to be computable in log space, such as the determinant of a matrix, or
anything in nondeterministic log space.
We stumbled on this result when we were trying to prove a lower bound
for the Tree Evaluation Problem.
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We had the following idea for a proof. First, at some point you need to
compute the left child of the root: node B in this diagram. Then you
need to keep that in memory while you compute the right child, C. That
uses up log k bits of memory in addition to the subroutine that’s
computing C. Therefore, the argument goes, every level you add to the
tree adds log k bits that your algorithm needs to remember.
The catalytic space result effectively shows that this approach will never
work. Even if we could argue that you need to remember B while you’re
computing C, this result says that the subroutine computing C can
borrow the memory being used to store B.
The history of the techniques we use goes back pretty far.



Bounded-width polynomial-size branching programs recognize exactly those languages
in NC1. [D. Barrington 1989]

Computing algebraic formulas using a constant number of registers. [M. Ben-Or, R.
Cleve 1992]
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A 1989 paper by Barrington showed that if you restrict branching
programs to have just five nodes in every layer, you can still do a lot with
them. A later 1992 paper by Ben-Or and Cleve showed how you can do a
lot with register programs that only use three registers.
Both of these papers show how you can trade time for space in order to
make algorithms that use an extremely limited amount of memory.
Another thing they have in common is that they use reversible operations.
The basic ingredient in our algorithm is reversible operations on registers.



Ring R
Inputs x1, . . . , xn ∈ R
Work registers r1, . . . , rm ∈ R

Reversible instructions:

I Example: r5 ← r5 + r4 × x1.

I Inverse is r5 ← r5 − r4 × x1.

Notation: τj denotes the starting value of register rj .

Definition

A sequence of reversible instructions cleanly computes f into ri if, once it finishes:

I ri = τi + f (x1, . . . , xn)

I all other registers are unchanged (rj = τj for j 6= i)

Invert the whole sequence by running the inverse of each instruction in reverse order.
(Computes −f .)

` instuctions ⇒ branching program with (`+ 1)|R|m states.
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The model is that we have n inputs, x one through x n, and m work
registers r one through r m, and their values are all in some ring R.
We’re interested in reversible instructions. For example, the first
instruction here adds register four times input 1 to register five. We can
reverse that instruction by subtracting instead of adding. When you run
these two instructions in sequence, it’s the same as doing nothing.
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For any register rj , let’s define τj to be its initial value before our
computation begins.
Now, suppose we have some function f we’re interested in computing.
I’m going to define something called cleanly computing f.
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A sequence of reversible instructions cleanly computes a function f into
register i if, once the computation finishes, the new value of register i is
its old value τi plus f, and every other register is unchanged: r j equals
tau j for j not equal to i. Note that we’re allowed to use these other
registers, as long we make sure to undo all our changes.
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Since each instruction is reversible, we can reverse the entire sequence by
running the inverses of the original instructions in reverse order. If we do
that, the result is a clean computation of negative f.
There are two reasons we like this definition. The first is that it’s
designed to help us re-use memory, as we’ll see later. The second reason
is we can translate register programs into branching programs.
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If we can cleanly compute f with m registers and ` instructions, then we
can turn that into a branching program with ` plus one layers, each
containing R to the m states in order to remember all the register values.
So, we can design our algorithm using register instructions and then
convert it to a branching program. Now, let’s try some examples of clean
computation.



Example

Cleanly compute x1 + x2 into r1:

I r1 ← r1 + x1

[r1 = τ1 + x1]

I r1 ← r1 + x2

[r1 = τ1 + x1 + x2]
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For our first example, suppose we want to cleanly compute x one plus x
two into register one. We can do this with two instructions: first add x
one, then add x two.
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After we add x one, the value of the register is tau one plus x one.
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And after we add x two, the value of the register is tau one plus x one
plus x two. By definition, we’ve cleanly computed x1 plus x2 into r1.



Lemma: Multiplication

Suppose P1 cleanly computes f1 into r1 and P2 cleanly computes f2 into r2. Then we
can cleanly compute f1 × f2 into r3 as follows:

r1 r2 r3

P1

τ1 + f1 τ2 τ3

r3 ← r3 − r1 × r2

τ1 + f1 τ2 τ3 − τ1 × τ2 − f1 × τ2

P2

r3 ← r3 + r1 × r2

τ1 + f1 τ2 + f2 τ3 + τ1 × f2 + f1 × f2

P−1
1

r3 ← r3 − r1 × r2

τ1 τ2 + f2 τ3 − τ1 × τ2 + f1 × f2

P−1
2

r3 ← r3 + r1 × r2

τ1 τ2 τ3 + f1 × f2

Cost: need to run P1 and P2 twice each. But: no memory needs to be reserved.
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For our next example, let’s say we’ve got a subroutine P one that cleanly
computes a function f 1, and a subroutine P two that cleanly computes a
function f 2, and our goal is to compute the product f 1 times f 2.
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The program looks like this. We can think of it as being made out of two
interlocking pieces.
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The first piece is calling the subroutines P one and P two. We first call P
one, then P two. Since everything’s made out of reversible instructions,
we’re then able to run P one backward and P two backward.
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Lemma: Multiplication

The other piece is adding and subtracting r one times r two. Since the
subroutines are modifying the contents of r one and r two, this has a
different effect each time. So, let’s see what happens when we run the
program.
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Reversible computation
Lemma: Multiplication

We start by running P1. After it’s finished, register one has value tau 1
plus f 1, and the other two registers have their original values tau 2 and
tau 3.
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Reversible computation
Lemma: Multiplication

The next instruction subtracts two terms from register three, leaving a
value of tau 3 minus tau 1 times tau 2 minus f one times tau 2.
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Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

As the program continues, different terms are added and subtracted from
register 3.
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Catalytic approaches to the Tree Evaluation Problem
New algorithm

Reversible computation
Lemma: Multiplication

At the end, register three holds its original value plus f1 times f2, and the
other registers have been restored. That means we’ve succeeded.
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Reversible computation
Lemma: Multiplication

Now, we’ve computed f1 times f2, but what did it cost us? Well, we had
to make four subroutine calls: P1 and P2 forward and backward. But,
this algorithm is extremely efficient with memory. Notice that P1 and P2
are allowed to use all of our memory, as long as they restore it when
they’re done. There is no memory that needs to be set aside for the
parent routine’s exclusive use. I like to think of these programs as
“borrowing” the memory they use.
Now let’s talk about how to apply these techniques to solving the Tree
Evaluation Problem.
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Solving TEP

This is the last part of the video.
We want to build a reversible computation to compute the value at the
root node of the tree. In order to do that, it will be helpful to have an
algebraic formula for that root value.



A formula for TEP
Let R = Z/2Z = {0, 1}. Define [x = y ] = 1 if x = y , 0 otherwise.

Suppose node v has children ` and r :
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3

` r

[v = 1] =

[` = 2]× [r = 1] + [` = 2]× [r = 2] + [` = 1]× [r = 3]

Let fv denote v ’s table. In general,

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]
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Solving TEP
A formula for TEP

From here on, our ring will be the integers mod two, meaning registers
will store bits. I’ll introduce some notation: brackets x equals y is an
indicator which equals one if they are equal and otherwise zero.
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Solving TEP
A formula for TEP

Now, suppose we have some node v with two children, ` and r, and this
is the table at that node. Let’s try to build a formula for the indicater v
equals one.
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Solving TEP
A formula for TEP

Well, there are three ways that node v can be equal to one,
corresponding to the three times one appears in the table at node v. We
can turn this into a formula with three terms.
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Solving TEP
A formula for TEP

The terms say: either ` equals 2 and r equals 1, or ` equals 2 and r
equals 2, or ` equals 1 and r equals 3.
Now let’s write the general formula.
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Solving TEP
A formula for TEP

Let’s say f v is the table of values at node v.
In general, we take the sum over all possible values y and z for the two
children. Inside the sum, we check node v’s table to see whether each
term should be included. We multiply that indicator by the indicators `
equals y and r equals z.
With that formula in hand, let’s try to build a recursive algorithm.



First attempt

[v = x ] =
∑

(y ,z)∈[k]2

[fv (y , z) = x ]× [` = y ]× [r = z ]

Algorithm CheckNode(v , x , i)

Parameters: node v , value x ∈ [k], target register i
Computes ri ← ri + [v = x ]

I If v is a leaf:
I ri ← ri + [v = x ] is one instruction.

I else: for (y , z) ∈ [k]2:
I ri ← ri + [fv (y , z) = x ]× [` = y ]× [r = z ]

using multiplication algorithm: 4 recursive calls each to CheckNode to compute
[` = y ] and [r = z ], using two extra registers j and j ′.

Needs three registers total. Gives branching program with width 8 and length (4k2)h−1.
Worse than pebbling, which uses Θ((k + 1)h) states.
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Solving TEP
First attempt

I’ve left our formula at the top of the slide for reference. Our algorithm’s
goal is to compute the formula, which determines whether node v has
value x.
The algorithm is parameterized by the node v, the value x, and some
target register i. If node v has value x, it will flip the bit in register i. In
other words, it assigns r i plus the indicator v equals x to r i.
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Solving TEP
First attempt

If v is a leaf node, then the value of v is directly available as part of the
input. So, we can do this in just one instruction.
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Solving TEP
First attempt

If v is an internal node, then we compute this formula by looping over all
k squared possible values for y and z and adding each term to r i one at a
time.
Each term includes a product of the indicators l equals y times r equals z,
which we compute using the multiplication algorithm. This requires four
recursive calls to CheckNode and two auxiliary registers j and j ′.
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Solving TEP
First attempt

We use a total of three registers: register i holds our output, and two
more registers j and j ′ are required by the multiplication algorithm. Since
we’re using clean computations, the calls to the subroutine are free to use
those same three registers, so we really don’t need any more than three
registers, including all the recursive calls.
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Solving TEP
First attempt

If we convert this to a branching program, those three one-bit registers
translate to eight states in each layer. The length of the program is four
k squared to the power h minus one, since at every level, we make four k
squared recursive calls.
This isn’t very good.
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Our original pebbling algorithm just uses k plus one to the h states. So,
we’ll need another trick if we’re going to beat it.
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Each iteration of the for loop is using the multiplication lemma to
combine the indicators ` equals y and r equals z.
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If you remember the multiplication lemma, it looks kind of like this. We
make four calls to our subroutines for checking ` and r, and in between
those four calls, we update our final output register r i. I’ve coloured the
recursive calls in blue.
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The for loop just means we do this whole thing over and over again, k
squared times.
It turns out we can completely parallelize this. All of the instructions on
the first row can be run at the same time, with one recursive call that
checks all of the possible values for the left child. We can do similar
things for the other lines.
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This means that instead of four k squared recursive calls, we only need to
make four! The catch is that instead of three registers, we need three k,
since each recursive call needs to return k different indicator values.
We can think of the output of the subroutine as a k-bit string, where
exactly one of the bits is one and the others are zero. We call this a
one-hot encoding.
So, how efficient is this strategy?



I Pebbling algorithm: Θ((k + 1)h) states.

I “One-hot encoding” algorithm:
I Recursively computes k-bit vector ([v = 1], [v = 2], . . . , [v = k]).
I 3k registers. 4 recursive calls ⇒ Θ(4h)k2 total steps.
I Total Θ(23k4hk2) states.

I Beats pebbling when h� k

log k
.

I “Binary encoding” algorithm:
I Recursively compute log k bit vector representing node value.
I 3 log k registers.

I Degree 2 log k multiplication requires k2 recursive calls instead of 4.
I Total k2h+Θ(1) states. (Always worse than pebbling.)

I “Hybrid encoding algorithm” interpolates between the two, and uses
(O(kh ))2h+εkΘ(1) states.

I Beats pebbling when h ≥ k1/2+ε′ .
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Remember that the Pebbling algorithm uses on the order of k plus one to
the h states.
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This new parallel algorithm uses three k registers, so each layer of the
branching program will have two to the three k states. It calls itself
recursively four times, which means the number of layers is on the order
of four to the h times k squared extra work that needs to be done.
In total, we have on the order of two to the three k times four to the h
times k squared states.
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When k is large compared to h, this is much worse than the pebbling
algorithm. But when h is asymptotically larger than around k over log k,
this algorithm is an improvement.
The three times k registers are really hurting us, so the next thing we
tried was a binary encoding: instead of k bits, use log k bits to represent
the value at the node in binary.
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The benefit here is that we only need three times log k registers, instead
of three k.
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The trouble is that we end up needing to multiply more than two values
at once — our formula has degree two log k. We found that we needed
to make k squared recursive calls in order to multpily two log k values,
resulting in a total of k to the two h plus order one states.
This is strictly worse than the pebbling algorithm, but it’s still a useful
stepping stone.
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By interpolating between the two encodings, you get an algorithm that
does asymptotically better than pebbling as long as the height of the tree
is at least k to the power one half plus any small constant.



Conclusion

I We present a new algorithm for TEP: first improvement over classic “pebbling”
algorithm since the problem was introduced in 2010.

I Still might be possible to prove TEP 6∈ L, implying P 6= L.

Future work

I Improve the algorithm. (Better ways to compute d-ary products? We’re not the
first to want them.)

I Find new TEP lower bounds that apply to these algorithms. (Old lower bounds
apply only to read-once or “thrifty” algorithms.)
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Catalytic approaches to the Tree Evaluation Problem
New algorithm

Solving TEP

In conclusion, we presented a new algorithm for the tree evaluation
problem, which is the first improvement since TEP was introduced ten
years ago.
It is not a log space algorithm, so TEP remains a possible approach for
separating P from L.
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There are two basic directions for future work.
The first is to improve the algorithm. The main limiting factor seems to
be computing products. The “binary encoding” algorithm didn’t work
because the number of recursive calls we have to make at each level is
exponential in the degree of the polynomial we’re computing. It would be
nice to be able to improve that. We’re not the first to point out this
direction.
The other direction is to go back to proving lower bounds for the tree
evaluation problem. If you remember, I briefly mentioned that we have
lower bounds for two restricted classes of algorithm. The first is
read-once algorithms, which are never allowed to read the same part of
the input twice. The second is thrifty algorithms, which never read an
irrelevant piece of the input. Our new algorithms violate both of those
restrictions: we read every single part of the input, whether it’s relevent
or not, and we do it over and over again, using repeated computation to
save memory.
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Thanks!

Thanks for watching, and I hope to see you at the first fully online STOC!
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