
1 Related work

See [1] and [2]. (TODO: in some places where we cite [1], it might make more
sense to cite earlier work instead.)

This write-up is based on conversations on the darcs-users mailing list
between James Cook and Ben Franksen.

2 Patch universes

Our overall goal is to extend any universe of patches so that patches can always
be commuted. To do that, we need to first define what a patch universe is.

In Section 2.1, we give an unusual but fairly simple definition. In the follow-
ing sections we relate this definition to other formulations: Section 2.2 describes
a way of interpreting our definition; Section 2.3 shows how standard patch the-
ory properties follow from our definition; and in Section 2.4 we comment on
whether our definition follows from standard patch theory properties.

2.1 Definition

We start by defining a notion of patch graph without inverses. Then we define
invertible patch graphs where patches have inverses, and state a final property
that such a graph must have in order to be a patch universe.

A patch graph is a possibly infinite directed multigraph, where the edges
are labelled by names. The nodes are called contexts and the edges are called
patches. This is captured in the following definition:

Definition 1 (Patch graph). A patch graph consists of arbitrary sets C and
N together with a set P ⊆ C × C × N . Elements of C, N and P are called
contexts, names and patches.

For a patch p = (c1, c2, n), its starting context is start(p) = c1, its ending
context is end(p) = c2, and its name is name(p) = n.

It is often useful to have an inverse operation on patches. The next definition
shows how to add inverses to a patch graph. An alternative approach would be
to describe axioms that inverses should satisfy, but it seems simpler to simply
prescribe directly how inverses behave.

Definition 2 (Adding inverses). Given a patch graph G = (C,N, P), the ex-
tension with inverses of G, denoted addinv(G), is a new graph where names
gain a sign (like positive and negative names in [2]), original patches from G
have positive names, and we add an inverse of every patch in G with a negative
name.

More precisely: addinv(G) = (C, {1,−1}×N,P ′), where P ′ = {(c1, c2, (1, n)) |
(c1, c2, n) ∈ G} ∪ {(c2, c1, (−1, n)) | (c1, c2, n) ∈ G}.

The inverse of a name n = (s, n′) is n−1 = (−s, n′). The inverse of a patch
p = (c1, c2, n) is p−1 = (c2, c1, n

−1).

1

Definition 3 (Invertible patch graph). An invertible patch graph is a patch
graph G such that G = addinv(G′) for some patch graph G′ = (C,P,N).

When we want to distinguish names and patches in G vs. G′, we use the
terms unsigned name and unsigned patch for names and patches in N and P ,
and signed name and signed patch (or just name and patch) for names and
patches in {1,−1} ×N and P ′.

An invertible patch graph needs one more property, involving patch sequences
and signed name multisets, in order to be a patch universe.

Definition 4 (Patch sequence). A patch sequence in a patch graph (C,P,N)
is a finite path in the graph.

More precisely, a patch sequence is a sequence of contexts c0, c1, . . . , cn ∈ C
together with a sequence of patches p1, . . . , pn ∈ P where for all i ∈ {1, . . . , n−1},
start(pi) = ci−1 and end(pi) = ci.

When n is is at least 1, we may omit the context sequence c0, . . . , cn and
describe the sequence only in terms of the patch sequence p1, . . . , pn.

The length n of the sequence is denoted length(S). We say start(S) = c0
and end(S) = cn.

(The reason we explicitly make the context sequence c0, . . . , cn part of the
definition is to ensure a length-0 sequence still has a starting and ending con-
text.)

Definition 5 (Signed name multiset). Let G = addinv(G′) be an invertible
patch graph, and let N be the set of unsigned names, i.e. names in the patch
graph G′. A signed name multiset is a function A : N → Z.

The name signature of a patch sequence S is the signed name multiset A
where A(n) is equal to the number of times the positive name (1, n) appears in
S minus the number of times the negative name (−1, s) appears in S.

For example, consider this patch sequence:

c0 c1 c2 c3 c4
p q p′−1 q′

where name(p) = (1, np), name(p′−1) = (−1, np), and name(q) = name(q′) =
(1, nq). The name signature of the sequence is A where A(nq) = 2 and A(n′) = 0
for all other names n′.

The essential property of a patch universe is that a sequence of patches where
each name occurs the same number of times positively and negatively must be
a cycle.

Definition 6 (Name-balanced). A patch sequence in an invertible patch graph
is name-balanced if its name signature is zero. In other words, every name
appears the same number of times positively and negatively in it.

Definition 7 (Balance-respecting). An invertible patch graph is balance-respecting
if every name-balanced sequence is a cycle: that is, whenever S is a name-
balanced sequence, start(S) = end(S).

TODO: come up with a better name

2

Definition 8 (Patch universe). A patch universe is an invertible patch graph
that is balance-respecting.

TOOD: motivate the definition and/or give examples

2.2 Interpretation

To make Definition 8 a bit more concrete, we can use the following interpreta-
tion:

• A context encodes a full file tree: directories, files, and the files’ contents.
Contexts could optionally have additional information; for example, if two
unrelated patch sequences arrive at the same file tree, we may choose to
distinguish them as different contexts.

• A patch on its own doesn’t mean much: it’s just a “before” and “after”
context, together with an identity for the patch. However, a patch name
n can be thought of as a partial function on contexts: given any starting
context c, look for a patch with name n and starting context c, and if that
exists, define fn(c) to be the ending context of that patch.

fn is well-defined because there can’t be more than one patch with name
n and starting context c, as proved in the following lemma.

Lemma 1. In any patch universe, if c is a context, n is a name, and p, p′ are
patches such that name(p) = name(p′) and start(p) = start(p′), then end(p) =
end(p′).

Proof. Consider the path (p−1, p′). This path is name-balanced, so by the
balance-respecting property, end(p′) = start(p−1) = end(p).

2.3 Commuting and permutivity

In this section, we relate our definition of patch universe to the more usual
approach of defining patch operations in terms of a commuting relation, by
showing that properties that are normally taken as assumptions follow from our
definition of patch universe.

Definition 9 (Commute relation). In any patch universe, we define a binary
relation ↔ on length-2 patch sequences as follows. (p, q)↔ (q′, p′) iff:

• start(p) = start(q′) and end(q) = end(p′) (so the length-4 sequence (p, q,
q′−1, p′−1) is a cycle); and

• name(p) = name(p′) and name(q) = name(q′).

Lemma 2 (Properties of commuting). In any patch univers, the relation ↔
satisfies the following properties for any patches p, q, r, s:

• Symmetry: If (p, q)↔ (r, s), then (r, s)↔ (p, q).

3

• Rotation: If (p, q)↔ (r, s), then (r−1, p)↔ (s, q−1).

These are taken from Jacobson’s Definition 2.1 [1]. We leave out the effect-
preserving property because in our theory patches do not have the same kind of
effect. (See Section 2.2.)

Proof. Symmetry follows immediately from Definition 9.
To prove the rotation property, suppose (p, q)↔ (r, s). The following items

together imply (r−1, p)↔ (s, q−1):

• (r−1, p) is a patch sequence. We must show end(r−1) = start(p). This
is true because end(r−1) = start(r) (Definition 2) and start(r) = start(p)
(definition of ↔).

• (s, q−1) is a patch sequence. This is true by a similar argument.

• start(r−1) = start(s). This is true because end(r) = start(s) (since (r, s)
forms a patch sequence) and start(r−1) = end(r).

• end(p) = end(q−1). This is true for a similar reason.

• name(p) = name(s). This follows directly from (p, q)↔ (r, s).

• name(r−1) = name(q−1). This is true because name(r) = name(q) (fol-
lows directly from (p, q) ↔ (r, s)) together with the observation that if
name(r) = name(q) then name(r−1) = name(q−1) (follows from Defini-
tion 2).

Lemma 3 (Uniquely commuting [1]). In any patch universe, for every length-2
patch sequence (p, q), there is at most one (r, s) such that (p, q)↔ (r, s).

Proof. Suppose (p, q)↔ (r, s) and (p, q)↔ (r′, s′). We wish to show r = r′ and
s = s′.

Since a patch is nothing more than a triple (starting context, ending context,
name) (Definition 1), it suffices to show that r and r′ have the same starting
and ending contexts and name, and similarly for s and s′.

Most of this follows from the definition of ↔:

• r and r′ both have the same name as q.

• s and s′ both have the same name as p.

• r and r′ both have the same starting context as p.

• s′ and s′ both have the same ending context as q.

It remains to show that r and r′ have the same ending context and that s
and s′ have the same starting context: in other words, we need to show that
the paths (r, s) and (r′, s′) visit the same intermediate context. In the following
diagram, we’re trying to show c′1 = c′′1 :

4

c0

c1

c2

c′1 c′′1

p

q

r

s

r′

s′

Consider the path (s, s′−1):
c2

c′1 c′1

r s′−1

This is a name-balanced path, so by the balance-respecting property, its
starting and ending contexts are the same. Intuitively, this tells us c′1 = c′′1
in the above diagram. More carefully, the balance-respecting property gives
start(s) = start(s′). Since (r, s) and (r′, s′) are paths, we have end(r) = start(s)
and end(r′) = start(s′), allowing us to also conclude end(r) = end(r′).

Lemma 4 (Permutivity [1]). Suppose S is a patch sequence, and the patch
sequences S′ and S′′ are both derived from S by applying a sequence of commute
operations amounting to the same overall permutation σ. (TODO: make this
more precise; for now, note that we’re loosely following [1, Definition 4.4], where
σ = s1 · · · sk = t1 · · · tk.)

Then S′ = S′′.

Proof. Denote the patches in the sequences as S = (p1, . . . , pn), S′ = (p′1, . . . , p
′
n)

and S′′ = (p′′1 , . . . , p
′′
n), and the contexts as (c0, . . . , cn), (c′0, . . . , c

′
n) and (c′′0 , . . . , c

′′
n).

Since commuting two patches swaps their names, the permutation σ per-
mutes the order of the names in the sequence: name(p′i) = name(pσ(i)).

Since S′ and S′′ have the same permutation σ, they have the same sequence
of names: name(p′i) = name(p′′i) for all i ∈ {1, . . . , n}. This property is sufficient
for the rest of the proof.

Let j ∈ {0, . . . , n}. We wish to show c′j = c′′j . If we can show this for all
j, it follows that the two patch sequences are the same, since a patch is fully
identified by its name and starting and ending contexts (Definition 1) and we’ve
already shown name(p′j) = name(p′′j).

We’ll follow a similar argument as in the proof of Lemma 3. Consider the
path (p′j+1, p

′
j+1, . . . , p

′
n, p
′′
n
−1
, p′′n−1

−1
, . . . , p′′j+1

−1
):

5

c′n

c′n−1 c′′n−1

...
...

c′j c′′j

p′j

p′n−1

p′n p′′n
−1

p′′n−1
−1

p′′j
−1

This is a name-balanced path, so its starting and ending contexts are the
same: c′j = c′′j . (Note: If j = n, then the path is empty, but the argument still
works.)

2.4 Possible equivalence to other formulations

It would be nice to be able to prove that other formulations of patch theory
are equivalent to our formulation of a patch universe. Section 2.3 gives evidence
that any patch universe satisfies properties required in other formulations. What
about the other direction? Is it true that anything satisfying the properties in
Section 2.3 is also a patch universe according to Definition 8?

Here’s a possible counterexample. Create a patch graph that looks like this:

c0 c1 c2 c3 c4

p

p−1

q

q−1 p′

p′−1

q′

q′−1

where name(p) = name(p′) and name(q) = name(q′). Define the commute
relation to be empty: there exists no combination of patches such that (p1, p2)↔
(p3, p4). The fact that nothing ever commutes means the properties described in
Lemmas 2, 3 and 4 are trivially satisfied. However, this is not a patch universe
according to Definition 8, because the name-balanced sequence (p, q, p′−1, q′−1)
is not a cycle.

So, at first glance it seems that our definition is stronger than one derived
just from Lemmas 2, 3 and 4. However, there’s something strange about our
counterexample: patches p and p′ have the same name, but there’s no reason
for that. Someone using an implementation of our theory will never be able to
apply a sequence of commuting operations to transform patch p into p′.

Conjecture 1. There exists some reasonable condition about patches with the
same names — for example, whenever any two patches have the same name,
there’s some sequence of commute operations that turns one into the other —

6

such that that property and the properties described in Lemmas 2, 3 and 4 to-
gether imply that what we have is a patch universe as defined by Definition 8.

3 Context addresses

Definition 10 (Context address). A context address within a patch universe
is a pair (s,A) where s is a context (called the sequence’s starting context) and
A is a signed name multiset (Definition 5).

Definition 11 (Context pointed to by an address). A context address (s,A)
points to a context e if there exists a patch sequence S with name signature A
such that start(S) = s and end(S) = e.

Lemma 5. A context address (s,A) points to at most one context.

Proof. Suppose (s,A) points to context e and also points to context e′.
Then there exist patch sequences S and S′ which both have name signature

A and both have starting context s, and such that end(S) = e and end(S′) = e′.
Then make a new path by concatenating the reverse of S with S′. This new

path starts at e and ends at e′. The path is name-balanced, because the name
signature of the reverse of S is −A, which cancels out the name signature A of
S′. Since the path is name-balanced, by the balance-respecting property of the
patch universe, we have e = e′.

4 Tree repositories for handling conflicts with-
out conflictors

Sometimes patches conflict : we have patches p1 and p2 but there is no sequence
of patches containing both. Darcs handles this by introducing a new kind of
patch called a conflictor.

In this section, we try something else: we require the user to resolve the
conflict by deactivating one or both of the conflicting patches, and optionally
recording a new patch to replace them.

We begin with an informal overview in Section 4.1, then give a more complete
description in the following sections.

4.1 Examples and motivation

Informally, we think of a tree repository as a tree of patches rooted at empty repo,
with one path from the root selected as the “chosen resolution”. The other
branches store patches that were discarded due to conflicts.

4.1.1 Resolving a conflict

For example, suppose patch p1 creates the following text file:

7

int x;

x = ask("Hwo old are you?");

print("That’s ", 7 * x, " in dog years.");

Our repository starts out with just p1:

• •
p1

Alice sees the spelling mistake on line 2, and creates patch p2 to fix it. In
Darcs notation:

hunk ./dog_years 2

-x = ask("Hwo old are you?");

+x = ask("How old are you?");

• • •
p1 p2

Meanwhile, Bob makes a different change to the same line, recording it as
patch p3:

hunk ./dog_years 2

-x = ask("Hwo old are you?");

+x = ask("Hwo old are you in human years?");

• • •
p1 p3

When Alice pulls Bob’s change, there’s a problem: p2 and p3 conflict. In
Darcs, this would be handled by creating a conflictor which returns the reposi-
tory to a state before either patch was applied. Alice would then record a new
patch to replace both changes.

With tree repositories, Alice can handle the conflict a few different ways.

Example 4.1 (Darcs-style conflict resolution). One way is to deactivate both
conflicting patches and create a replacement patch p4 incorporating both changes:

hunk ./dog_years 2

-x = ask("Hwo old are you?");

+x = ask("How old are you in human years?");

• •

• •

•
p1

p2
p3

p4

p2 and p3 stay in the repository in case we need them later, but we put them
off to the side and draw them in a different colour to show they are deactivated.

This way of resolving the conflict is similar to what happens with Darcs,
except the new patch p4 does not depend on either of the conflicting changes.
(The full combination of changes Alice made — deactivating p2 and p3 and
creating p4 — does depend on both p2 and p3, so is very similar to a Darcs
conflictor.)

8

Example 4.2 (Resolving a conflict by keeping one side). Alice could also choose
to deactivate p2 and keep p3 (or vice versa):

• •

•

•
p1

p2

p3

Example 4.3 (Rebasing). Finally, Alice might decide to replace p2 with a new
patch p5 to be applied after p3:

hunk ./dog_years 2

-x = ask("Hwo old are you in human years?");

+x = ask("How old are you in human years?");

• •

•

• •
p1

p2

p3 p5

This is a bit like rebasing p2.

4.1.2 Merging after a conflict resolution

After Alice resolves the conflict, she’ll want to share her changes. In Darcs,
merging two repositories results in a repository with all the patches from both
(possibly re-ordered or transformed into conflictors). How should we merge tree
repositories, which can have both active and deactivated patches?

As our first example, suppose Alice has merged in Bob’s changes, resolving
the conflict as in Example 4.1, and Bob pulls her changes back. Since Bob
hasn’t made any additional changes of his own, his repository should end up in
the same state as Alice’s:

Example 4.4 (Merging back a conflict resolution).
Merging

• •

• •

•
p1

p2
p3

p4

and

• • •
p1 p3

produces

• •

• •

•
p1

p2
p3

p4

9

(In general, if repository A has all the changes from B, then when B pulls
from A their repository should end up in the same state.)

What kind of merge algorithm could result in this behaviour? Before we
answer that, let’s see another example. Suppose Carol cloned Alice’s repository
early on, when Alice only had p1 and p2. Carol then went on to record a new
patch, p6, which adds a new line to the end of the program:

hunk ./dog_years 4

+print("Goodbye!");

• • • •
p1 p2 p6

Note that p6 is independent of all the other patches we’ve seen (except p1);
that is, it can be commuted with any of them. What should happen when Carol
pulls from Alice’s merged repository from Example 4.1?

The final result shouldn’t include p2 — Alice deliberately deactivated that
patch in order to resolve a conflict. On the other hand, there’s no reason not
to include p6, if it can be commuted to co-exist with the remaining patches. So
we should end up with:

Example 4.5.
Merging

• •

• •

•
p1

p2
p3

p4

and

• • • •
p1 p2 p6

produces

• •

• •

• •
p1

p2
p3

p4 p′6

where p′6 has the same name as p6.

We aren’t quite ready to describe the merge algorithm yet, but these exam-
ples illustrate an important principle:
Principle. A repository R can be identified by its set of active patch names
A(R) and deactivated patch names D(R), in the sense that two repositories R
and R′ are equivalent iff A(R) = A(R′) and D(R) = D(R′). Merging should
result in simple and predictable behaviour with respect to these sets.

We formally define equivalence in Definition 14.
Here’s a rule we could follow which is consistent with all the examples seen

so far:

10

A possible merge rule. When R1 and R2 are merged, producing R3, all
deactivated patches must stay deactivated: D(R3) ⊇ D(R1) ∪ D(R2). (The
particular choice is at the discretion of the user, as in the examples in Sec-
tion 4.1.1.) The remaining patches from either repo will be active: A(R3) ⊇
(A(R1)∪A(R2)) \D(R3), with new patches added at the discretion of the user.

In other words: patches never disappear, but once a patch is deactivated, it
never becomes active again.

But wouldn’t it be useful to be able to re-activate a patch? It turns out we
can allow this, as shown in the next section.

4.1.3 Re-activating a patch

Let’s return to Example 4.1, where Alice resolved a conflict by de-activating
one of Bob’s patches. Suppose that in the meantime, Bob has recorded a large
number of important changes which all depend on his original p3:

• • • • • •
p1 p3 p7 p8 p9

Recall that Alice’s repository looks like this:

• •

• •

•
p1

p2
p3

p4

Now, when Alice pull’s Bob’s repository, she feels regret: by deactivating
Bob’s patch p3, she has made it impossible for Bob’s important work in patches
p7, p8 and p9 to be applied. One solution would be to write a new patch p10
which rebases all of Bob’s work on top of p4:

• •

• •

•

•

•

• •
p1

p2
p3

p7

p8

p9

p4 p10

One problem with this solution is that if Bob continues his work on top of p9
in the meantime, that will result in more conflicts to resolve. Alice would rather
re-activate Bob’s p3 so that his later patches can remain active, and instead
de-activate her own smaller change, p4, and record a replacement p11:

11

• •

• •

• • • • •
p1

p2

p3

p4

p7 p8 p9 p11

Fortunately, in tree repositories, it is possible to re-activate a patch in this
way, as long as some new patch in the repository depends on it. To make sure
this won’t get us in any trouble, we define a partial order on repositories (Defini-
tion 16) that ensures that de-activation and re-activation are “non-destructive”,
meaning they are operations that result in larger repositories according to our
order.

The “new patch” that permits an older patch to be re-activated does not
itself need to be active. (Indeed, we must allow it to be inactive: otherwise, we
would not be able to handle the situation where first a patch p1 is re-activated
by a patch p2 that depends on it, and p2 is later deactivated (but not p1).) The
ability to reactivate using inactive patches could be useful if the user wishes to
reactivate a patch but does not wish to add any new patches. “Inactive tags”
could be used for this, empty patches that do nothing more than depend on the
patch to be reactivated, and are never active.

4.1.4 A tree repository is a set of tree patches

At this point, the reader may feel uneasy about the following two things.
First, the principle in Darcs that a repository is a set of patches has an

benefits that we seem to have lost. It allows us to reason about repositories by
comparing the patches that are in one, the other, or both. If Alice’s repository
is the patch sequence p1, p2 and Bob’s is p1, p3, the situation is clear: Bob has
one change Alice doesn’t have, and vice-versa. Merging is simply the process of
moving all the missing patches of one repository to the other. It also enables
certain operations: to undo the last thing the user did, just remove the most
recently-added patch; when merging repositories, to pull in some but not all
changes, simply pull in the desired patches and ignore the others. The situation
with tree repositories is less clear.

Second, our history is missing information. Take, for example, Carol’s
merged repository from Example 4.5:

• •

• •

• •
p1

p2
p3

p4 p′6

Why were p2 and p3 deactivated? Which patch(es) replaced them? If you’ve
been reading the story closely, it turns out they were deactivated as part of a
conflict resolution, and p4 is their replacement. But the tree view doesn’t give
us enough information to deduce that, so the historical record feels incomplete.

The solution to both of these problems is tree patches. A tree patch is a

12

collection of patch names together with, optionally, a set of deactivation markers
causing other names to be deactivated. For example, Alice’s conflict resolution
from Example 4.1 would be represented as { deactivate n2, deactivate n3, add
n4 }, where n2, n3, n4 are the names of p2, p3, p4, respectively. Associating a
tree repository with a set of tree patches lets us recover at least some of the
benefit of the Darcs principle that a repository is a set of patches.

Tree patches are not essential to tree repositories, so we will start our devel-
opment without them, and then show how to add them on in Section 4.2.11.

4.1.5 Application: keeping amendment history

The preceding examples show how tree repositories can be used to manage
conflicts between patches. Another application that may be possible is keeping
track of a history of amendments.

In Darcs, patches can be edited using the darcs amend command, but it
is inadvisable to do this if any other repositories have a copy of your patch,
because the command creates an entirely new patch which conflicts with the
original.

Tree repositories might admit a simple mechanism for amending a patch
while keeping the original in the repository: simply de-activate the old version of
the patch and add the new one in its place. This would also have the advantage
of preserving history: if an amendment is done in error, the original version of
the patch could be recovered. An entire sequence of patches representing rough
work toward a goal could similarly be “squashed” into a single tidy patch that
replaces them, allowing the tidier representation and the sequence of rough work
that led to it to coexist in the repository’s history.

It may similarly be possible to deactivate a patch with no replacement, as a
history-preserving way to remove it when it’s no longer wanted.

There are many details that would need to be worked out, and it is beyond
the scope of this document. We can’t claim with certainty that it would be
feasible.

This functionality might be compared to Mercurial’s evolve extension.

4.2 Mathematical formulation and algorithms

In this section, we mathematically define tree repositories and operations that
can be performed on them.

4.2.1 Setting and assumptions

We assume there is an underlying patch universe G′ = addinv(G) (Definition 8).
We will not use inverses, so within this section, “names” and “patches” refer to
names and patches in G.

Let C,N, P be the contexts, names and patches in G; i.e. G = (C,N, P).

13

We make the following additional assumption, which in short means that
there are conflict and dependency relations between patch names which deter-
mine the possible orders for patches.

Assumption 4.1 (Simple dependencies). There exist:

• a partial order required by ⊆ N×N ; required by(n1, n2) means n2 depends
on n1.

• a relation conflict ⊆ N ×N ; and

• a context empty repo ∈ C (which we will use as a universal starting
context)

such that the following properties hold. (Note that we don’t assume required by
and conflict can be computed just from the names. We only assume the relations
exist.)

1. conflict is symmetric: ∀n1, n2 ∈ N. conflict(n1, n2) ⇐⇒ conflict(n2, n1).

2. required by and conflict are consistent, in the following sense. For all
names n1, n2 ∈ N , at most one of the following is true:

• required by(n1, n2)

• required by(n2, n1)

• conflict(n1, n2)

3. required by determines when patches commute: a length-two patch se-
quence p1, p2 commutes iff ¬ required by(name(p1),name(p2)).

4. conflict determines when patches can be merged. That is, for any two
patches p1 and p2 with start(p1) = start(p2), there exists a patch p′2 with
name(p′2) = name(p2)) and start(p′2) = end(p1) iff ¬ conflict(name(p1),name(p2)).

5. Every patch sequence S = p1, . . . , pk with starting context start(S) =
empty repo and names n1, . . . , nk satisfies all of the following:

• No name is repeated.

• None of the names conflict: ∀1 ≤ i < j ≤ k. ¬ conflict(ni, nj).

• All dependencies are satisfied: for every name ni in the sequence,
and every other name n ∈ N , if required by(n, ni), then n = nj for
some j ≤ i.

Definition 12 (Dependency and reverse dependency sets). The dependency set
of a name n1 ∈ N , denoted dependencies(n1), is the set of all names n2 ∈ N
such that required by(n2, n1).

For a set of names S, dependencies(S) =
⋃
n∈S dependencies(n).

The reverse dependency set of n1 ∈ N , denoted reverse dependencies(n1),
is the set of all names n2 ∈ N such that required by(n1, n2).

14

Notes:

• A name is always in its own dependency set, since required by is a partial
order and therefore satisfies required by(n, n) for all names n.

• This set is finite for all names that we see in practice: if it were infinite,
the name could not appear in any patch sequence starting at empty repo.

Aside. A weak converse of the last property of Assumption 4.1 follows from
the assumption. Suppose n1, . . . , nk is a sequence of names with no repeats
or conflicts and where dependencies are satisfied. Suppose further that each
name ni can be realized as a patch pi appearing in a patch sequence starting at
empty repo (not necessarily the same sequence). Then using commute opera-
tions, it is possible to produce a patch sequence p′1, . . . , p

′
k with starting context

empty repo and names n1, . . . , nk. We will not be using this converse directly,
and do not include a proof.

4.2.2 Repositories and signatures

Definition 13. A tree repository is a pair R = (T,C), where T is a finite set
of patch sequences with starting context empty repo and C is a patch sequence
with starting context empty repo. C is called the chosen resolution of R.

There are no explicit “trees” in this definition, but we can relate it to the
tree-like presentation in Section 4.1 as follows. C is the highlighted, active path
of patches in the tree. The rest of the tree is the union of the paths in T . For
example, this repository:

• •

• •

• •
p1

p2
p3

p4 p6

could be represented as ({(p1, p2), (p1, p3)}, (p1, p4, p6)). We use this representa-
tion instead of a tree to simplify the technical presentation in this section, but a
practical implementation could store the patches in a tree to reduce redundancy.

A repository can be identified by its set of active patches and full set of
patches.

Definition 14. A tree repository signature, or signature, is a pair of sets of
names (P,A) where A ⊆ P . Names in P are called present and names in A are
called active.

The signature of a tree repository R = (T,C), denoted signature(R), is the
pair (P,A) where P is all names that appear in T or C, and A is names that
appear in C.

Two tree repositories are equivalent if they have the same signature.

Note that not every “tree repository signature” is realizable as the signature
of a tree repository: for example, a signature could contain active patches that

15

conflict with each other. For the most part, the signatures we look at will be
realizable, but it will be useful to allow impossible signatures when reasoning
about merges and tree patches (see Lemma 9).

For example, the signature of ({(p1, p2), (p1, p3)}, (p1, p4, p6)) is ({n1, n2, n3,
n4, n6}, {n1, n4, n6}), following the convention that ni is the name of patch pi.

Definition 15. A signature (P,A) is complete if P and A are closed under
dependencies. More precisely, for every n ∈ P , dependencies(n) ⊆ P , and for
every n ∈ A, dependencies(n) ⊆ A.

Lemma 6. Every tree repository’s signature is complete.

Proof. Let (T,C) be a tree repository with signature (P,A).
Let n1 ∈ P and suppose required by(n2, n1). We must show n2 ∈ P . Indeed,

n1 appears in some patch sequence in T (by the definition of signature). By
Assumption 4.1, n2 appears earlier in that same sequence, and is therefore also
in P .

Similarly, if n1 ∈ A and required by(n2, n1), then n1 appears in C and so n2
also appears in C and is therefore also in A.

4.2.3 Ordering signatures

Definition 16 (Partial order on signatures). We define a relation � on signa-
tures as follows: (P1, A1) � (P2, A2) iff P1 ⊆ P2 and

A2 ⊆ A1 ∪
⋃

n∈P2\P1

dependencies(n).

In other words, all names present in (P1, A1) are present in (P2, A2), and every
active name in (P2, A2) was already active in (A1, P1), or is a dependency of a
“newly present name, i.e. a name in P2 \ P1. (Recall that under Definition 12,
a name is always in its own dependency set, i.e. n ∈ dependencies(n).)

Theorem 1. � is a partial order on signatures.

Proof. Let (P1, A1), (P2, A2), (P3, A3) be signatures.

Reflexivity. It’s straightforward to verify that (P1, A1) � (P1, A1).

Antisymmetry. Suppose (P1, A1) � (P2, A2) and (P2, A2) � (P1, A1). To
prove the antisymmetry property of �, we should show that (P1, A1) = (P2, A2).

Since P1 ⊆ P2 and P2 ⊆ P1 we have P1 = P2 (antisymmetry of ⊆).
Now, P2 \ P1 is empty, so the definition of (P1, A1) � (P2, A2) gives us

A2 ⊆ A1 ∪
⋃

n∈P2\P1

dependencies(n) = A1.

A1 ⊆ A2 follows from a similar argument.

16

Transitivity. Suppose (P1, A1) � (P2, A2) and (P2, A2) � (P3, A3). We must
show (P1, A1) � (P3, A3).

P1 ⊆ P3 follows from transitivity of ⊆.
It remains to show

A3 ⊆ A1 ∪
⋃

n∈P3\P1

dependencies(n).

We know
A2 ⊆ A1 ∪

⋃
n∈P2\P1

dependencies(n)

and
A3 ⊆ A2 ∪

⋃
n∈P3\P2

dependencies(n);

combining these, we have

A3 ⊆A1 ∪

 ⋃
n∈P2\P1

dependencies(n)

 ∪ ⋃
n∈P3\P2

dependencies(n)

=A1 ∪
⋃

n∈(P2\P1)∪(P3\P2)

dependencies(n)

=A1 ∪
⋃

n∈P3\P1

dependencies(n)

where (P2 \ P1) ∪ (P3 \ P2) = P3 \ P1 follows from P1 ⊆ P2 ⊆ P3.

4.2.4 Destructive and non-destructive operations

In Darcs, patches can be added to a repository using the darcs pull and darcs

record commands, and these changes are propagated using darcs push. A user
who only uses these three commands will find that Darcs is monotone, in the
sense that changes are only accumulated, and never lost. We call these changes
non-destructive.

On the other hand, if a user destroys or changes patches using commands
like darcs obliterate or darcs amend, those changes are not propagated when
running darcs push: for example, darcs push will not obliterate a patch on
the remote repository just because it was obliterated in the local one. We call
these changes destructive.

A similar distinction can be defined for tree-like repositories using the par-
tial ordering �. We call any operation that makes a tree repository’s signature
larger (or equal) under the � relation non-destructive, and other operations de-
structive. In the following sections, we will ensure that operations like recording
a new patch or merging changes from another repository and resolving conflicts
are all non-destructive.

17

The merge procedure in Section 4.2.9 ensures that non-destructive changes
are propagated when merging repositories, in the sense that if Alice and Bob
start out with the same repository, then Alice makes a non-destructive change
and then Bob pulls from Alice, Bob’s repository ends up in the same state as
Alice’s. TODO: argue why that’s true.

4.2.5 Recording a new patch

Suppose (T,C) is a tree repository, and the user would like to record a new patch
p. Recall that C is the sequence of patches the user has chosen to include in the
repository (the chosen resolution). Therefore, we assume start(p) = end(C).

To record the patch p, we simply replace the repository with (T,Cp).

Lemma 7. Recording a new patch (with name not present in the existing repos-
itory) is a non-destructive operation (as defined in Section 4.2.4).

Proof. Let (P,A) = signature((T,C)) and (P ′, A′) = signature((T,Cp)). We
must show (P,A) � (P ′, A′).

P ′ = P ∪ {name(p)}, so P ⊆ P ′ as required.
A′ = A ∪ {name(p)}, and since name(p) ∈ P ′ \ P , we have

name(p) ∈ dependencies(name(p)) ⊆
⋃

n∈P ′\P

dependencies(n),

so
A′ ⊆ A ∪

⋃
n∈P ′\P

dependencies(n)

as required.

4.2.6 Deactivating a patch

Here we show how to deactivate a patch and the patches that depend on it.
This is used in the merge algorithm in Section 4.2.9 to handle conflicts. A user
might also want to apply this operation directly, when the effect of the patch is
no longer desired.

Input. We’re given a tree repository (T,C) and the index of a patch p in C.

Algorithm. We commute the patch p to the end of C and drop it. Along the
way, we may also be forced to commute other patches that depend on p to the
end too; we also drop those when we drop p. Details are omitted; this will be
similar to how Darcs obliterates a patch and other patches that depend on it.

Let C ′ be the result of this operation. Then the final repository we return
is (T ∪ {C}, C ′).

18

The operation is non-destructive. Let (P,A) = signature((T,C)) and
(P ′, A′) = signature((T ∪ {C}, C ′)). Then P ⊆ P ′, because every name present
in T is also in T ∪ {C}. Also, A′ ⊆ A, since every name in C ′ is also in C. So
(P,A) � (P ′, A′): the operation is non-destructive (Section 4.2.4).

Efficiency. The algorithm will perform O(n2) commute operations, where n
is the length of C.

The repository will grow on disk, since it now needs to store the full original
tree T , the original chosen resolution C, and the new chosen resolution C ′. It
may be possible to reduce the size by removing redundant patches. See also
Section 4.2.10.

4.2.7 Reactivating a patch

As promised in Section 4.1.3, it is possible to re-activate a previously deactivated
patch p.

First, it is likely the user will need to de-activate patches p conflicts with,
as well as patches that conflict with p’s dependencies if those are also being
re-activated. Section 4.2.6 explains how to deactivate these patches and the
patches that depend on them.

Once the tree repository’s chosen resolution no longer has any patches that
conflict with p or its dependencies, re-activating p consists of two steps:

• Insert p and its dependencies into the chosen resolution. We already have
a copy of them somewhere: recall that a tree repository is a pair (T,C); T
and C together contain all active and deactivated patches in the repository.
Some commuting may be needed. (TODO: elabourate?)

• Create a new patch that depends on p. Otherwise, the resulting repo
wouldn’t be “larger” than the original under �; in other words, this would
be a destructive operation. If the user does not actually have changes
depending on p that they wish to record, it is sufficient to add a new
patch depending on p to one of the patch sequences in T . (For example,
this could be a tag that depends on p and does nothing else.)

4.2.8 Merging as an abstract operation

As shown in Section 4.1.1, there are many ways to merge repositories when there
are conflicts. In this section, we set a simple and very loose restriction on what
counts as a “merge”. In the next section, we will show how to produce such a
merge.

Definition 17. A tree repository R3 is a merge of tree repositories R1 and R2

if signature(R1) � signature(R3) and signature(R2) � signature(R3).

This definition ensures that merging is a non-destructive operation, and also
that it propagates non-destructive operations as prescribed in Section 4.2.4.

19

4.2.9 Implementing merging

Here we will describe how to merge two repositories and allow the user to handle
conflicts. This, together with recording new patches (Section 4.2.5), should be
enough to create a usable version control system.

Input. We are given two tree-like repositoriesR1 = (T1, C1) andR2 = (T2, C2).
(For exmaple, R1 might be the user’s local repository, and R2 a repository
they’re pulling from.)

Step 1: compute signatures. Let (P1, A1) = signature(R1) and (P2, A2) =
signature(R2). These are easily computed by scanning all the names in T1, C1,
T2 and C2 respectively. (An implementation could also store a pre-computed
signature with every repository.)

Step 2: find the new chosen resolution. The goal of Step 2 is to produce
a sequence of patches C that will be the chosen resolution of our merged repos-
itory. If possible, we’d like C to include all the patch names from A1 ∪A2, but
that may not be possible due to conflicts.

For this step, we will adapt the merging process described in Section 8 of I.
Lynagh’s Camp Patch Theory [2].

Step 2a: preparation. We begin by permuting C1 and C2 so that they begin
with all the names that are active in both repositories, i.e. in A1 ∩A2).

By Lemma 6, A1 and A2 are both closed under dependencies, and therefore
so is A1 ∩ A2. That is, for any n1 ∈ A1 ∩ A2 and n2 ∈ dependencies(n1), we
have n2 ∈ A1 ∩A2.

Start with the sequence C1.
Let n1 be the first name in A1 ∩A2 that appears in the sequence C1. Then

n1 has no dependencies other than itself: dependencies(n1) = {n1}. Otherwise,
say required by(n′, n1), n′ would come before n1 in C1 and so n1 would not have
been the first.) By Assumption 4.1, the patch with name n1 can be commuted
to the beginning of the sequence C1 to produce a sequence C ′1.

Now, let n2 be the next name after n1 that appears in C ′1. By a similar
argument, it has no dependencies other than possibly n1 and n2, and so C ′1 can
be commuted so it starts with names n1 and n2.

By repeating this process, we can transform C1 into a sequence that starts
with the names in A1 ∩A2, and by a similar process we can permute C2 so that
it starts with that same prefix.

Call the common prefix C0, and the remaining parts C3 and C4. The are
arranged like this:

20

empty repo

•

• •

C0

C3 C4

In other words, we’ve permuted the two chosen resolutions to have the form
C0C3 and C0C4, where C3 and C4 have no names in common.

Step 2b: deactivating. If a patch has been deactivated in one repository,
we must make sure it is not active in the final repository, unless a patch that
is only present in the other repository depends on it. (This is required in order
for merging to be non-destructive.)

For every patch p in C3, check if it has been deactivated in R2: that is, if
name(p) ∈ P2\A2. If so, we must compute whether any name in P1\P2 depends
on name(p). To do this, we try to commute p to the end of C3, and also try
to commute p to the end of every patch sequence in T1 where it appears. If we
are able to do so, or if the only patches blocking p from being commuted to the
end also have names in P2 \ A2, then p (along with those other patches) must
be dropped from the end of C3.

We follow the same process to drop patches from C4.
We believe this can be done with O(|P1|+ |P2|+ i1|P1|+ i2|P2|) (attempted)

commute operations, where i1 = |A1 ∩ (P2 \ A2)| is the number of potentially-
deactivated patches from R1, and similarly i2 = |A2 ∩ (P1 \ |1)|.

(TODO: explain better and verify the runtime.)

Step 2c: combining, and handling conflicts. If C4 from the previous step
is empty, then we are done with Step 2: we can take the patch sequence C0C3

as our chosen resolution, and it will include all names in A1 ∪ A2, which is the
ideal outcome.

Assume now that C4 is not empty. Then C4 = pC ′4 for some patch p; in a
picture:

empty repo

•

• •

•

C0

C3 p

C ′4

21

We then attempt to merge p with each patch in C3 in turn. For example, if
q is the first patch in C3 (C3 = qC ′3), successfully merging p and q would give:

empty repo

•

•

•

•

••

C0

q

C ′3

p

C ′4p′

Repeating this operation, we can attempt to move p all the way to the end
of the sequence C3.

This will fail if p conflicts with a patch in C3. Every time we encounter such
a conflicting patch, delete it from the sequence, along with every patch that
depends on it, using the method described in Section 4.2.6. We end up with
this:

empty repo

•

• •

••

C0

C ′′3 p

C ′4p′′

where C ′′3 is C3 with all patches that conflicted with p (and their dependen-
cies) removed.

At this point, we show the user the list of patches that conflicted with p,
and offer them a choice: they may either deactivate them (and keep C ′′3) or they
may instead deactivate p and all the patches in C4 that depend on it. (If there
were no conflicts, the choice can be skipped.)

If they choose to deactivate p, we follow the procedure in Section 4.2.6 to
produce a sequence C ′′4 without p.

If they choose to keep p, then we commute p back to the start of C ′′3 (possible
by Assumption 4.1), producing:

22

empty repo

•

• •

• •

C0

p p

C ′′′3 C ′4

Now we can extend C0 to C0p and continue merging C ′′′3 and C ′4.

Step 3: Replacement patch and output Step 2 produces a patch sequence
Cmerge containing the patches the user has chosen to keep from C1 and C2.

At this point, if any patches were deactivated, the user may wish to record a
new patch to replace their effects (see, for example, Example 4.1). This optional
patch is added to the end of Cmerge.

Finally, the algorithm outputs R3 = (T1 ∪ T2 ∪ {C1, C2}, Cmerge).

Non-destructive. Let (P1, A1) = signature(R1), (P2, A2) = signature(R2)
and (P3, A3) = signature(R3).

By design, T1 ∪ T2 ∪ {C1, C2} contains all the patch names present in either
original repository, so P1 ⊆ P3 and P2 ⊆ P3.

The deactivations from Step 2b ensure thatA3 ⊆ Ai∪
⋃
n∈P3∩Pi

dependencies(n)
for i ∈ {1, 2}.

So (P1, A1) � (P3, A3) and (P2, A2) � (P3, A3): this procedure computes a
merge (Definition 17).

4.2.10 Storing tree repositories efficiently

The operations in Sections 4.2.6 and 4.2.9 add new patch sequences to the T
part of a tree repository (T,C). In a näıve implementation which stores each
patch sequence separately, this would require storing an additional O(n) patches
after each operation, where n is the length of the chosen resolution C.

We can mitigate this by storing T as a tree instead of a set of sequences,
as shown throughout the exposition in Section 4.1. This way, common prefixes
would only need to be stored once.

Other simplifications may be possible: for example, in this tree repository:

•

•

• •

p′2

p1 p2

if name(p′1) = name(p1), there’s no reason to keep p′1. It can be simplified to:

23

• • •
p1 p2

These repositories are equivalent (Definition 14). In general, operations that
result in equivalent repositories might be used to reduce the size.

It is tempting to try to reduce the tree so that no patch name appears twice:

Definition 18. A tree repository is non-redundant if (when viewed as a tree)
none of the patches in the tree have the same name.

Unfortunately, it is not always possible to make a repository non-redundant.
For example:

• •

•

• •

•

•

•

p1

p4

p2 p3

p5

p′2

p6

Suppose name(p2) = name(p′2), p1 and p5 conflict, p2 and p4 conflict; p3
depends on p1 and p2; and p6 depends on p5 and p′2. Then there is no tree with
this set of patch names which doesn’t contain any duplicates. (TODO: include
proof; it’s on the darcs-users list dated 2020-11-19.)

4.2.11 Tree patches

As explained in Section 4.1.4, it would be good to have a notion of a “tree
patch” which can combine a set of changes to a tree repository, and such that
each repository can be thought of as nothing more than a collection of tree
patches.

Definition 19. A tree patch is a pair (P,D) where P and D are sets of names
and D ⊆ P .

Informally, the effect of the tree patch (P,D) is to deactivate all the names
in D, and to add or re-activate all the names in dependencies(P)\D. Its precise
effect is given by Definition 20.

(Definition 19 could be expanded to allow for metadata like a user-supplied
description.)

Definition 20 (Signature of a set of tree patches). The signature of a set S of
tree patches is signature(S) = (P, P \D), where

P =
⋃

(P ′,D′)∈S

P ′

24

and
D =

⋃
(P ′,D′)∈S

D′ ∩R(P, P ′)

where R(P, P ′) = {n ∈ P | reverse dependencies(n) ∩ P ⊆ dependencies(P ′)}.

In other words, a name n is active as long as there are no tree patches
(P ′, D′) that explicitly deactivate n and are also “aware” of all of the other
patches that depend on n (in the sense that those patches are in P ′).

Defining D in this way allows successively applied tree patches to flip prim-
itive patches back and forth between active and de-activated states, as long as
every time a patch is re-activated, a new name n can be found to make it active.
This will be useful in Lemma 8.

Tree patches supplement the information in a tree repository. We store both
together:

Definition 21. A tree patch repository is a pair (R,S), where R is a tree
repository, S is a set of tree patches, and signature(R) = signature(S).

Note that since a tree patch only has names, and not the content of patches,
repositories cannot exchange information through tree patches alone: access
to the underlying tree repository is still needed. However, the invariant that
signature(R) = signature(S) hints that the tree patches are encoding meaningful
information about the repository, and give us hope:

• That a meaningful “partial pull” operation could be implemented: allow
the user to pull a subset of the tree patches from another repository, and
then update R so that its signature matches.

• Similarly, that a meaningful “obliterate” operation could be implemented.

• Finally, that it may be possible to design a tree patch format that includes
the underlying patches, and can be used to exchange information between
repositories.

The following lemmas and corollaries show that every non-destructive oper-
ation can be recorded with a corresponding tree patch, and that in particular,
when merging two tree patch repositories, we can take the union of the tree
patch sets (possibly adding a conflict resolution patch).

Lemma 8. If S1 is a set of tree patches and (P2, A2) is a complete (Defini-
tion 15) signature such that signature(S1) � (P2, A2), then there exists a tree
patch t such that signature(S1 ∪ {t}) = (P2, A2).

Proof. Let (P1, A1) = signature(S1).
Set t = (Pt, Dt) where

Dt = P2 ∩ reverse dependencies(dependencies(P2 \ P1) \A2)

25

and Pt = Dt ∪ (P2 \ P1). In other words, we for every inactive dependency of
a new name (dependencies(P2 \ P1) \ A2), we explicitly disable it and all of its
reverse dependencies.

Let (P ′2, A
′
2) = signature(S1 ∪ {t}). We must show that P2 = P ′2 and A2 =

A′2.
Indeed,

P ′2 =

 ⋃
(P ′,D′)∈S1

P ′

 ∪ Pt
=P1 ∪Dt ∪ (P2 \ P1)

=P2

where the last step uses the facts thatDt ⊆ P2 and P1 ⊆ P2 since signature(R1) �
signature(R2).

Now, let’s compare A2 and A′2.
Suppose n ∈ A2; we’ll show n ∈ A′2.
First, we’ll show that n 6∈ Dt. Indeed, let n′ be any dependency of n. Then

since (P2, A2) is complete, n′ ∈ A2, so n′ 6∈ dependencies(P2 \ P1) \ A2. Since
none of n’s dependencies are in that set, n is not in Dt.

Now, From the definition of � (Definition 16) we know n ∈ A1 or n ∈
dependencies(P2 \ P1).

• Case 1: n ∈ A1. In this case, since (P1, A1) = signature(S1), there
is no (P ′, D′) ∈ S1 such that n ∈ D′ ∩ R(P1, P

′), taking R(P1, P
′) from

Definition 14. Adding t to the set cannot add any new names to R(P2, P
′),

so n 6∈ D′ ∩ R(P2, P
′). Finally, the new element Dt ∩ R(P2, Pt) also does

not contain n since n 6∈ Dt. So n is in the set D from Definition 14, so
n ∈ A′2.

• Case 2: n ∈ dependencies(P2 \ P1). Then reverse dependencies(n) con-
tains a name than is in P2 but not in any of the sets P ′ from the signature
S1, so none of the sets R(P2, P

′) contain n for (P ′, D′) ∈ S1. Since n 6∈ Dt

we also have n 6∈ Dt∩R(P2, Pt), and so n is in the set D from Definition 14,
so n ∈ A′2.

We have shown that A2 ⊆ A′2. Conversely, suppose n ∈ P2 \ A2. Then by
the construction of Dt ⊆ Pt, R(P2, Pt) and Dt both contain n, so n 6∈ A′2.

We have A2 ⊆ A′2 and (P2 \ A2) ∩ A′2 = ∅; since A′2 ⊆ P2 we conclude that
A′2 = A2 as required.

Corollary 1. If (R1, S1) is a tree patch repository and R2 is a tree repository
such that signature(R1) � signature(R2), then there exists a tree patch t such
that (R2, S1 ∪ {t}) is a tree patch repository.

Proof. R2’s signature is complete (Lemma 6), so we can apply Lemma 8 to find
the patch t.

26

The proof of Lemma 8 is constructive, so it could be used to construct
the patch required for Corollary 1. However this could be computationally
expensive. Probably it would be better to create specialized algorithms to create
tree patches for specific operations.

For example, adding a new (primitive) patch (Section 4.2.5) p simply corre-
sponds to the tree patch ({name(p)}, ∅). Reactivating a patch (Section 4.2.7) is
similarly easy in the case where no patches needed to be deactivated. Deacti-
vating patches (Section 4.2.6) may be more difficult.

Now, we show that when merging tree patch repositories, we can keep the
tree patches from both.

Lemma 9. For any sets of tree patches S1 and S2, signature(S1 ∪ S2) is the
smallest signature that is greater than both signature(S1) and signature(S2) (in
order theory, it is the join of the two signatures).

Proof. Let (P1, A1) and (P2, A2) by the signatures of S1 and S2. Let (P1∪2, A1∪2) =
signature(S1 ∪ S2).

Let (P3, A3) be any signature such that (P1, A1) � (P3, A3) and (P2, A2) �
(P3, A3). We must show that (P1∪2, A1∪2) � (P3, A3).

It is simple to show that P1∪2 = P1 ∪ P2 and P1 ∪ P2 ⊆ P3, so P1∪2 ⊆ P3.
It remains to show that A3 ⊆ A1∪2 ∪ dependencies(P3 \ P1∪2).
Let n be any name in A3. If n ∈ dependencies(P3 \ P1∪2) we are done.

Henceforth assume n 6∈ dependencies(P3 \ P1∪2); our goal is to show that n ∈
A1∪2.

Since (P1, A1) � (P3, A3), we know n ∈ A1 ∪ dependencies(P3 \ P1).
For the sake of contradiction, suppose (P ′, D′) is an element of S1 such that

n ∈ D′∩R(P1∪2, P
′), takingR from Definition 20. Then reverse dependencies(n)∩

P1∪2 ⊆ dependencies(P ′). In particular, reverse dependencies(n)∩P1 ⊆ dependencies(P ′),
so n ∈ D′∩R(P1, P

′), so n 6∈ A1. Therefore we must have n ∈ dependencies(P3\
P1). Since by assumption n 6∈ dependencies(P3\P1∪2), we have n ∈ dependencies(P2\
P1): there is some n′ ∈ P2 \ P1 such that n ∈ dependencies(n′). Since P ′ came
from S1, we know n 6∈ dependencies(P ′), and so n′ ∈ reverse dependencies(n)∩
P1∪2 \ dependencies(P ′). So n 6∈ R(P1∪2, P

′): a contradiction.
This argument by contradiction shows n 6∈ D′∩R(P1∪2, P

′) for every (D′, P ′) ∈
S1. A similar argument shows it for every (D′, P ′) ∈ S2, and so n is not in the
set D, so n ∈ A1∪2.

Corollary 2. Let (R1, S1) and (R2, S2) be tree patch repositories. Suppose R3

is a merge of R1 and R2 (Definition 17).
Then there exists a tree patch t such that (R3, S1 ∪ S2 ∪ {t}) is a tree patch

repository. If R3 is minimal in the sense that signature(R3) is the smallest
signature greater than both signature(S1) and signature(S2), then (R3, S1 ∪ S2)
is a tree patch repository.

Proof. By Lemma 9, signature(S1 ∪ S2) � signature(R3), so Lemma 8 gives us
the required tree patch.

If R3 is minimal, then Lemma 9 also tells us that signature(S1 ∪ S2) =
signature(R3).

27

Caveats and missing pieces.

• The dependency structure of tree patches is not as simple as for primitive
patches. Primitive patches are straightforward: a patch can be added to
a repository if the repository has all of its dependencies and no conflicting
patches. For tree patches, we can say a set of tree patches S is consistent
if there exists a tree repository R such that signature(R) = signature(S).
It’s possible, for example, to have a situation where tree patch A can be
added to the set {B,C} or the set {B,D} but not to the set {B}: that
is, in the presence of patch B, A depends on C or D. (Say A and B add
conflicting primitive patches p1 and p2 and C and D both deactivate p2.)

• The complexity of some of the operations hasn’t been worked out. For
example, computing the tree patch corresponding to deactivating a prim-
itive patch, or computing the new tree repository after a “partial merge”
where some but not all tree patches are pulled, or similarly, computing
the effect of obliterating a tree patch.

• Although Corollary 2 says that merging repositories doesn’t require adding
a new tree patch as long as the merge is “minimal”, we haven’t shown that
merges ever are minimal. (We expect a merge with no conflicts is minimal,
but this needs to be proved.)

• Tree patches cannot be used exclusively to exchange information between
repositories, since they don’t contain any actual (primitive) patches. Is
there some way to add the necessary information?

4.3 User interface considerations

What should the state of the repository be during a merge, before
conflicts are fully resolved? Section 4.2.9 describes an interactive algorithm
for merging which leads to the following question about the user interface.

Suppose Alice pulls from Bob’s repository and resolves a conflict by recording
a replacement patch, as in Example 4.1. During this process, the repository will
reach the following intermediate state, where the conflicting patches have been
deactivated but no new patch has been recorded:

• •

• •

p1

p2
p3

If we are storing the repository as a tree patch repository as in Definition 21,
then storing this repository will require adding a tree patch that disables p2 and
p3. This is unfortunate, since this is only a stepping stone to what Alice really
wants:

28

• •

• •

•
p1

p2
p3

p4

So, näıvely, the merge will result in two new tree patches being recorded
instead of one. To avoid this, we suggest storing a special pending tree patch
with the repository which records changes in progress, such as the deactivation
of p2 and p3. The pending tree patch can be converted to a recorded patch once
the user is finished.

This is similar to Darcs’s pending operations like file renames, which behave
as primitive patches that aren’t yet recorded. One difference is that while in
Darcs, the user is always free to discard all pending changes, it’s not always
possible here: Alice cannot simply discard the pending deactivation of p2 and
p3, since that would leave the repository in an impossible state, with conflicting
patches p2 and p3 active. This is a disadvantage of using tree patch repositories.
It could be mitigated by saving a snapshot of the repository allowing Alice to
revert to the state before the merge.

References

[1] Judah Jacobson. A formalization of darcs patch theory using inverse semi-
groups. Retrieved from ftp://ftp.math.ucla.edu/pub/camreport/cam09-
83.pdf on 2020-06-21, orginally 2009.

[2] Ian Lynagh. Camp patch theory. Retrieved from
https://archives.haskell.org/projects.haskell.org/camp/files/theory.pdf
(linked from https://archives.haskell.org/projects.haskell.org/camp/index.shtml)
2020-06-21.

29

