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Abstract— We present LiveTraVeL (Live Transit Vehicle
Labeling), a real-time system to label a stream of noisy ob-
servations of transit vehicle trajectories with the transit routes
they are serving (e.g., northbound bus #5). In order to scale
efficiently to large transit networks, our system first retrieves a
small set of candidate routes from a geometrically indexed data
structure, then applies a fine-grained scoring step to choose the
best match. Given that real-time data remains unavailable for
the majority of the world’s transit agencies, these inferences can
help feed a real-time map of a transit system’s trips, infer transit
trip delays in real time, or measure and correct noisy transit
tracking data. This system can run on vehicle observations
from a variety of sources that don’t attach route information
to vehicle observations, such as public imagery streams or user-
contributed transit vehicle sightings.

We abstract away the specifics of the sensing system and
demonstrate the effectiveness of our system on a “semisyn-
thetic” dataset of all New York City buses, where we simulate
sensed trajectories by starting with fully labeled vehicle tra-
jectories reported via the GTFS-Realtime protocol, removing
the transit route IDs, and perturbing locations with synthetic
noise. Using just the geometric shapes of the trajectories, we
demonstrate that our system converges on the correct route ID
within a few minutes, even after a vehicle switches from serving
one trip to the next.

I. INTRODUCTION

As urban populations skyrocket world-wide, transportation
agencies aim to promote public transit use, to cope with
congestion and the environmental impact of private cars.
Among the best ways to boost traveler confidence in public
transit is exposing reliable real-time data about the transit
system [5], [18]. A growing fraction of public transit agen-
cies are investing in systems that allow travellers to track
transit trips online. These systems typically aggregate data
from hardware tracking devices mounted on transit vehicles.
But such systems require non-trivial capital and operating
expenses, both to install and maintain the hardware, and to
maintain a reliable software infrastructure to aggregate and
serve the tracking data in real time. As of 2019, a public
real-time transit tracking feed in GTFS Realtime format [7]
remains unavailable for the vast majority of the world’s
transit agencies.

When real-time transit data is unavailable, several alterna-
tives involve sensing the real-time motion of transit vehicles
from noisy and incomplete signal sources. In many transit
systems, vehicles service multiple routes, so there is no trivial
persistent association between a vehicle and a single route
it serves. In this paper, we specifically consider the setting
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where we sense just the motion of transit vehicles but need to
algorithmically label vehicles with the transit routes they are
serving in real time (e.g., the “northbound bus #5”). This
addresses a common case where the input signals do not
include explicit, reliable labels, which can arise in several
contexts:
• For some transit agencies, real-time transit tracking

feeds may be available but contain errors in transit trip
labels, e.g. due to human operator errors. In these cases,
replacing the provided route label with one inferred
from the trajectory may yield more reliable results, since
the trajectory is sensed directly by on-board hardware.

• Vehicles can be detected via public imagery data from
municipal sources, which may resolve a vehicle serial
number painted on the bus, but not the dynamic head-
sign identifying the route.

• Vehicle trajectories can be inferred using roadway
induction-loop detectors if they are densely placed and
instrumented to classify vehicle dimensions.

• Some users may contribute user-generated reports of
transit vehicle positions without manually labeling the
report with the transit route they are on.

The problem has been studied in the past [16], [2], [19],
but past work has either avoided addressing scalability by
studying small networks of less than 10 routes, or has not
considered the problem of trip changes, where a single
vehicle can serve a series of different routes and go in and
out of service.

Here, we present LiveTraVeL (Live Transit Vehicle
Labeling), which addresses the general problem underlying
these various scenarios: given a stream of noisy reports of
fresh transit vehicle positions identified by physical vehicle
only, generate a stream of real-time estimated positions of
the vehicles on each transit route.

We abstract away the distinctions between the possible
sources of unlabeled vehicle trajectory data by representing
each vehicle trajectory as an abstract location time series:
a sequence of (vehicle id, observation timestamp, estimated
location) tuples. We also assume that a list of routes and
their stop locations is available. This static information can
be obtained in GTFS format for many more transit agencies
compared to realtime data.

Given such a stream of observations, we design a geomet-
ric similarity approach that builds on dynamic time warping
to label each vehicle observation with a transit route ID,
from the vocabulary of all transit route IDs specified by the
agency’s static GTFS feed. Crucially, we seek to maximize
the amount of time during which the vehicle receives a



correct route assignment, including time periods when the
vehicle switches from serving one transit route to serving
another one.

We purposely focus on purely geometrical similarity be-
tween the trajectory observations and the static trip shapes,
avoiding any dependency on the published temporal sched-
ules of trips. In our experience, transit schedules for many
of the world’s agencies are often enough misaligned with
observed behavior that it is valuable to have this system
operate on the assumption that the schedule effectively
doesn’t exist. We leave to future work the integration of
temporal signals into this system.

Our experiments focus on data covering the entire bus
system of New York City. We picked this test setting to
demonstrate the system’s versatility in dealing with large
urban environments with complex and densely interwoven
transit networks. For these experiments, we generate a
“semisynthetic” dataset by adding synthetic noise to reported
vehicle trajectories, to model various kinds of measurement
noise that depend on the specifics of how vehicle positions
are sensed. Specifically, we take a GTFS Realtime [7] feed
from an agency that reports physical vehicle IDs in addition
to route IDs, hold out the route IDs, and add Gaussian
noise to each vehicle observation. This dataset allows us to
measure accuracy on a complex city transit network.

Our core contributions are:
• A new similarity measure, ordered matching score, for

comparing a sequence of noisy vehicle observations to
the shape of a transit route it might be serving. (§IV-D)

• A fast algorithm for matching vehicle observation se-
quences to routes, using an efficient retrieval step to
reduce the number of costly similarity measurements
that need to be computed. (§IV)

• An empirical demonstration of our algorithm’s ability to
identify the route a vehicle is following, to quickly adapt
when a vehicle goes out of service or starts serving a
new route, and to decide when it is not confident enough
to make an accurate prediction, based on a large-scale
semi-synthetic dataset. (§V)

II. RELATED WORK

Past work has used several approaches to match transit
vehicle trajectories to the routes they are serving. Thiagarajan
et al. [16] use a greedy algorithm to minimize a least-squares
metric, with a preprocessing step to remove outlier locations.
EasyTracker, by Biagioni et al. [2], models the routes as
hidden states in an HMM and uses the Viterbi algorithm to
find the most likely route. Zhou et al. [19] use cell tower
sightings instead of GPS location reports, and use a local
sequence alignment algorithm. Shah et al. [14] use Fréchet
distance, but only to classify the mode of transportation
rather than the specific route.

We are interested in handling trip changes, i.e. classifying
the evolution of a vehicle’s route assignment as it serves a
sequence of multiple trips, sometimes going out of service.
Of the listed methods, the only one besides ours that handles
trip changes is EasyTracker [2]. The other prior results all

assume that each trace will only cover time when the vehicle
is in service and covering a single route. EasyTracker’s
HMM addresses trip assignment evolution using an addi-
tional “Unknown” state in the HMM. However, EasyTracker
was evaluated on a 6-route dataset. Directly comparing
EasyTracker to LiveTraVeL would be difficult, since we
operate on a vastly larger dataset of 1241 New York bus
routes, requiring us to carefully consider the computational
cost. The running time of the Viterbi algorithm as used in
EasyTracker scales with the product of the number of edges
in the route map with the number of observations to be
mapped.

Previous work also covers some related problems that we
do not study here, including detecting when a mobile device
is travelling in a transit vehicle [16], [19], [14], and inferring
the transit route map from a collection of trajectories [2], [8]
in the case that the static route map is not explicitly provided
ahead of time.

Ferris et al. [5] found evidence that real-time data is
helpful to users: after providing new tools giving transit users
access to existing real-time bus data, they surveyed users and
found that users were more satisfied with public transit and
were able to use the system more efficiently.

An important ingredient in our method for matching
vehicles to routes is a time series similarity measure: a way
to evaluate how similar two ordered sequences of locations
are. We explore two different time similarity measures:
the well-known Dynamic Time Warping (DTW) algorithm,
and a custom variation on DTW which we call ordered
matching. Many other time series similarity measures have
been studied. Several surveys address the options and trade-
offs: [13], [9], [17]. There is work on improving the runtime
of both exact and approximate DTW [15], [1], [12], and
Ceccarello et al. [4] show how to use locality sensitive hash-
ing to implement approximate similarity search for Fréchet
distance.

In this work, we reduce the computational cost by inserting
a retrieval phase that decreases the number of routes to be
scored using the similarity measure.

III. PROBLEM DEFINITION

The input to our system is a real-time stream of reports
of transit vehicle locations, which we call “observations”.
Each of these observations consists of a vehicle ID, a (noisy)
timestamp and a (noisy) estimated location. We also use a
database of static transit data from GTFS. This includes tran-
sit stop locations and transit route geometries. GTFS allows
a transit agency to also specify schedules for each transit
trip. However, many of the world’s transit systems show
frequent large discrepancies between scheduled and actual
trip timings, so we forego the schedule information entirely
for the purposes of this paper, and leave the integration of
noisy schedule data to future work.

We define a transit route to be a sequence of stops which
are routinely served by transit vehicles in that order. For
example, the stops served by “southbound bus #5” would
constitute a route, while the reverse sequence of stops served



by “northbound bus #5” would constitute a different route by
our definition. Transit route specifications typically include
a polyline describing the full trajectory of a vehicle serving
this route, which our algorithm can use to improve precision.
A trip is the trajectory of a specific transit vehicle doing one
complete pass of a transit route.

Given the static data and observation sequences of each
vehicle, we aim to match these sequences, or substrings of
them, to transit routes, allowing us to infer which route a
vehicle is serving at any given time, and how far along
the route it is. The goal is to get an overview of current
locations of transit vehicles, which can be served to transit
users directly or used for further user-facing inferences such
as delay forecasting and alerting.

We consider three settings for matching vehicle observa-
tions to a route:

Offline. In the easiest variant, we have a sequence of
observations that come from a single trip, not necessarily
spanning the entire trip. We wish to predict which route
the vehicle is serving. Online. Observations come from a
single trip, but arrive in real-time, and at any given time we
would like to predict which route the vehicle is serving. Trip
changes. We have a sequence of vehicle observations from
a single vehicle arriving in real-time. The sequence might
include depot runs and trip changes.

IV. ROUTE MATCHING PIPELINE

We provide a pipeline for matching vehicle observations
to transit routes that can be adapted to all three settings. The
pipeline consists of two phases: a fast retrieval phase which
uses a geometrically indexed data structure to quickly narrow
the set of routes that the observations might match (§IV-C),
followed by a scoring phase that ranks the retrieved routes
(§IV-D). We use the scores to determine the likeliest route,
and to decide when we are confident in our prediction by
comparing the highest and second-highest scores.

A. Preprocessing

We store a sequence of key points for each transit route.
The sequence includes the stops along the route, as well as
equidistant sub-sampled points along the polyline connecting
each pair of consecutive stops. (This means the distance
between points will vary slightly between different pairs
of stops, but ensures that whenever two routes share a
consecutive sequence of stops, we extract the exact same
key points for those stops, giving both the exact same score
if all observations come from the overlapping segment.) The
parameter determining the (approximate) distance between
consecutive key points is called the refinement length. Ideally,
it should be chosen small enough to ensure all routes have
approximately the same density of key points (and thus
chosen smaller than the distance between consecutive stops),
as higher densities could give scoring advantages.

We then build a geometric index which can be queried for
all key points within a given disc, to be used in the retrieval
phase. This data structure is provided by the S2 spherical
geometry library. [11]

B. Time complexity

The purpose of the retrieval phase is to reduce the number
of routes that need to be considered by the slower scoring
phase. It uses the geometric index to quickly narrow down
the set of routes that the observations might match. This step
runs in time O(knnear), where k is a fixed parameter and nnear
is the number of key points the most recent k observations
pass near to. In particular, the runtime of the retrieval phase
does not depend on the total number of transit routes.

After the retrieval phase, the slower scoring phase is
applied to each retrieved route. Scoring a single transit route
against an observation sequence takes time O(|O||S|), where
|O| is the number of vehicle observations and |S| is the
number of key points along the route’s geometry. Note that
the refinement length thus carries a performance/runtime
trade-off, as finer subsampling improves the precision of
the scorer, but increases its runtime due to higher |S|. In
the online setting, when one new observation comes in, we
can update the score of a route in O(|S|) time rather than
reprocessing the full sequence O of observations.

C. Retrieval

To retrieve the set of candidate routes, the retrieval compo-
nent identifies routes with many segments near the observa-
tion locations, as follows. Given a sequence of observations,
the retrieval component computes a query region, which is
the union of a disc of radius r around each observation
location, for a given parameter r. It uses the aforementioned
geometric index to return all transit routes which have at least
k key points within the query region, where k is a parameter
referred to as the query cover. Note that the ideal parameter
choice for r and k depends on various factors such as the
refinement length, the number of observations in queried
observation sequences, average distance between consecutive
observations and noisiness of the observation data.

D. Scoring

The scoring component computes a similarity measure
between an observation sequence and a route, and updates
it in an online fashion for each new incoming observation.
For that purpose, it tries to match observation locations to
key points along the route. We introduce a new similarity
measure called the “ordered matching score”. The idea is
similar to dynamic time warping (DTW), which is a common
approach used to give a measure of similarity for time series
data. We will briefly outline both approaches and compare
them.

The high level idea common to both approaches is that
they try to find an alignment of two ordered data sequences
that minimizes or maximizes a sum of point-wise scores.
In our setting the two data sequences are the observations
O = {oi : 1 ≤ i ≤ |O|} and key points S = {si : 1 ≤
i ≤ |S|}. An alignment is a set of pairs (oi, sj) respecting
their orderings, i.e. if (oi, sj) is in A, then for k > i the
pair (ok, sl) can only be in A if l ≥ j. We call such an
alignment a DTW-matching if it contains each observation
and key point at least once, and we call it a matching if



it contains each observation and key point at most once. If
each pair (o, s) ∈ A has a score score(o, s), then the score
of an alignment A is simply the sum of the point-wise scores
of its pairs, i.e.

score(A) =
∑

(o,s)∈A

score(o, s).

In dynamic time warping, this point-wise score score(o, s)
is simply the distance between o and s, dist(o, s). DTW finds
the DTW-matching between O and S with the minimum
score, which is then called the similarity score between
O and S. A smaller score indicates higher similarity. The
algorithm to compute the minimum possible score runs in
O(|O||S|) using dynamic programming. It can be adapted to
align a sequence of observations to a contiguous substring
of key points rather than the entire sequence [10]. We use
that adaptation in our experiments.

We introduce a new similarity measure which we call
the ordered matching score. It differs from DTW in that
the alignment has to be a matching, i.e. may contain each
observation and key point at most once, and the aim is to
maximize the sum of the point-wise scores of each pair. The
score of an individual pair (o, s) is

score(o, s) = max(0, R− dist(o, s))

for some constant radius R. The ideal choice of R depends
on factors like the noise level and sampling frequency of the
observation data. Like DTW, our measure can be computed
via dynamic programming, yielding the same complexity.
However there are some advantages. Due to not having
to match every observation or key point, it automatically
disregards outliers and can match substrings of the key points
to the observation data. In fact, it can also naturally match a
suffix of O to a prefix of S, which is useful when considering
trip changes, while DTW does not easily extend to this
problem. Also note that the ordered matching approach has
a notion of “best possible score”. It is achieved if every
observation o is matched to a key point s at distance 0,
yielding a total score of R · |O|. Thus by dividing by this
value, scores can be normalized into a range between 0 and
1, with 1 indicating a perfect match.

The algorithm for computing the ordered matching score
uses dynamic programming. Let si,j be the ordered matching
score for matching the sequence of the first i observations
to the sequence of the first j key points. Then si,j =
max(si,j−1, si−1,j , si−1,j−1 + score(oi, sj)). The ordered
matching score for the two sequences O and S then is
s|O|,|S|, and can be computed in O(|O||S|). We summarize
the algorithm in pseudocode:

for i in {0,...,|O|}:
s[i, 0] = 0 # matching 0 key points

for j in {1,...,|S|}:
s[0, j] = 0 # matching 0 observations
for i in {1,...,|O|}:

s[i, j] = max(s[i,j-1], s[i-1,j],
s[i-1,j-1] + score(o[i],s[j]))

final_score = s[|O|, |S|]

Notice that when computing si,k for all k ≤ |S|, we do not
need the values of sl,k for l < i−1, and thus the computation
can be done in linear space. This can be exploited in the
online setting where observations come in one at a time: We
only cache si,k for all k ≤ |S| where i is the index of the
most recent observation. Then when observation i+1 comes
in we can still compute si+1,k for all k.

If we track observation sequences for a long duration, we
might want to have more recent observations contribute more
to the score than observations further in the past. For this
purpose we adjust the point-wise score of a pair (o, s) to be
score(o, s) · e−c∆t(o) with c being a decay rate parameter
and ∆t(o) denoting the time difference between observation
o and the most recent observation. Ordered matching scores
can be computed as before, with the difference that before
computing si+1,k for all k, we scale the cached values of
si,k with a factor of e−c∆t(oi).

Note that we still have a “best possible score” in this set-
ting and thus can normalize scores. As we have score(o, s) =
max(0, R − dist(o, s)) · e−c∆t(o) ≤ R · e−c∆t(o), the best
possible score is

∑
o∈O R · e−c∆t(o). We can compute this

score in an online fashion. If we cache the best possible
score fj for the sequence of the first j observations, we can
get the best possible score for the first j+ 1 observations as
fj+1 = fje

−c∆t(oj) +R.

V. RESULTS

This evaluation aims to study the route labeling accuracy
of our algorithm and its ability to recover when a transit
vehicle switches to a different route. We begin by studying
components separately and in simplified scenarios, building
up to the evaluation of the complete system, which handles
trip changes and filters low-confidence predictions.

A. Dataset

Our experiments use a semi-synthetic dataset. The static
route information that the algorithm needs as input, such as
locations of transit stops, which sequence of stops a route
is serving and polylines describing the trajectories between
consecutive stops, comes from a static GTFS feed [6]. Note
the distinction between static GTFS data and GTFS realtime
data. In contrast to realtime data, the static GTFS map data
used here is provided by many more transit agencies.

To obtain realtime vehicle observation data with ground
truth labels for evaluation we added noise to vehicle position
data reported by one of the few transit agencies that provides
such a real-time data feed (in GTFS realtime format). We per-
turbed the latitude and longitude values with Gaussian noise
to simulate noisy location data. The noise represents position
reporting errors that may be introduced with different sensing
strategies in real settings. Since this dataset is already labeled
with routes, we hide these labels from our algorithm and
evaluate the algorithm in terms of classification accuracy:
that is, the rate at which the route labels generated by the
algorithm match the realtime feed labels.

Specifically, the observation dataset we use in this section
comes from the GTFS feed describing the buses of New



York City, as provided to Google Maps as of July 2018.
This dataset was chosen as an example of a large, dense
urban bus system, which has provided, in our experience,
reliable static and real-time transit data, and reliably labeled
distinct physical vehicle IDs in the real-time data. The NYC
bus network in our dataset consists of 1241 bus routes. Many
of them have a few stops in one district, followed by a long
stretch without stops, such as along a highway, with more
stops following in the destination district. The real-time bus
data consists of observations that have a vehicle ID, a time
stamp and an estimated location, and is implicitly labeled
with a route ID which we use for evaluation. While serving
a trip, each bus usually has a sampling rate of roughly one
observation per minute. Gaps tend to be longer in between
trips, though occasionally also during trips. During manual
inspections, we found that occasionally trips or part of trips
were mislabeled with the wrong route ID in the original data.

B. Outline of experiments

In our first experiment (§V-D), we show performance
of the retrieval component for different parameter choices,
giving us an educated choice for later experiments. We
independently validate our scoring algorithm and compare
it to DTW in an idealized transit network where routes
never overlap (§V-E). Here we can aim for perfect labels,
given enough observations to overcome the noise in vehicle
positions. We then proceed to evaluate the full framework in
a real transit network without trip changes (§V-F), providing
a baseline for our labeling performance goal once trip
changes are included. We then compare how trip changes
affect our performance, as well as that of DTW (§V-G). To
be useful in practice, the algorithm must make few mistakes.
Finally, in (§V-H), we trade coverage for accuracy by filtering
out predictions where the algorithm is not “confident”.

C. Algorithm parameters

Due to long trip stretches without stops, subsampling of
static trajectories for the purpose of scoring, as described
in §IV, is crucial. As transit stops tend to be at least 0.1
km apart, we choose a refinement length of 0.1 km for all
the routes in the network. We add Gaussian noise with µ =
0, σ = 0.001◦ ≈ 0.1 km to the latitude and longitude of each
observation (except in §V-E, where we assess the effect of
noise on the scoring). For the radius parameter R in the
ordered matching scorer we used a value of 0.003◦, i.e. only
matching edges of spherical length up to 0.003◦ ≈ 0.33 km
have a positive contribution to the overall score. The DTW
scorer has no parameters that need to be set. For exponential
decay, we use a half-life time of 10 minutes: observations
10 minutes in the past factor into the score with half the
weight of fresh ones. Based on the first experiment, in the
later experiments on the full framework, the retrieval query
range r is chosen as 0.2 km and the query cover k as 10.

D. Retrieval

To understand the effect of parameter choices on the
effectiveness of the retrieval component, we measure the

number of candidate routes retrieved (out of the 1241 total
routes) and whether the candidate set includes the correct
route. Ideally, the retrieval component would return a small
candidate set that still contains the correct route to decrease
runtime of the following scorer without introducing errors.

Table I shows the performance of the retrieval component
for different choices of the query radius r and query cover
k. Each parameter choice was tested with the same sample
of 1000 observation sequences, each sequence containing
30 observations. The results show that even conservative
parameter settings can provide a tenfold reduction in input
candidates while introducing very few errors. For all later
experiments using the retrieval mechanism, we use r = 0.2
km and k = 10.

(a)

r
k 10 12 15 20 25 30

0.1 14.3 11.7 8.9 6.2 4.0 1.8
0.2 32.8 27.1 21.4 15.9 12.4 10.1
0.3 49.6 40.8 32.1 21.0 17.7 14.2
0.4 72.0 56.4 43.6 31.3 23.1 18.2
0.6 101.5 94.5 73.3 50.1 38.3 29.2
0.8 116.7 110.9 102.1 74.9 54.8 42.6
1.0 129.1 124.1 115.7 101.4 76.0 57.9

(b)

r
k 10 12 15 20 25 30

0.1 0.5% 0.7% 1.0% 3.6% 18.7% 56.2%
0.2 0.4% 0.4% 0.4% 0.7% 1.6% 2.2%
0.3 0% 0.3% 0.4% 0.6% 1.1% 2.0%
0.4 0% 0% 0.3% 0.4% 0.9% 1.8%
0.6 0% 0% 0% 0.4% 0.6% 0.9%
0.8 0% 0% 0% 0% 0.6% 0.8%
1.0 0% 0% 0% 0% 0.1% 0.6%

TABLE I: Retrieval performance as a function of query
radius r and query cover k: (a) Average number of candidates
returned. (b) % instances with correct route not retrieved.

E. Scorers in an Ideal Setting

We start the scoring evaluation with a simplified route
network where transit routes may intersect, but not overlap
(share route segments). Otherwise the best achievable pre-
diction success would depend on the degree of overlap of
the transit routes in the network, giving us no clear baseline.
The simplified network is a subset of the New York City
bus network consisting of 216 routes that might intersect,
but have no overlapping segments.

Fig. 1 shows the labeling accuracy of the ordered matching
and DTW scorers. For each scorer, noise level, and position
along a 30-observation sequence, we show a rank skyline:
the fraction of 100 trials where the correct label was always
ranked in the top 1 (or 5) from that observation onward.
We use the same pessimistic ”skyline” metrics in Fig. 2 and
3. The two scorers perform comparably, and only need a
few observations to reach nearly 100% accuracy. Predictably,
with more noise, we need more observations to reach high
accuracy.

F. Labeling Accuracy in a Real Setting

On networks with significant route overlaps, we cannot
expect high accuracy. Fig. 2 shows the labeling accuracy of



Fig. 1: Scoring performance in ideal setting by synthetic noise level.

the ordered matching scorer used together with the retrieval
component. This time, we evaluate on the full New York
City bus network. Each observation sequence belongs to a
single trip, for observation window sizes ranging from 1 to
30. For each size (number of observations used in scoring),
we used a sample of 250 trips of this length.

As expected, we observe a lower error rate when a longer
window of vehicle observations is used. While we cannot
expect this approach to always return the correct label due
to overlap in routes, we would expect the score of the correct
route to be close to the best scoring route once we use
sufficient observations. The blue line confirms that, for most
observation sequences, the score of the correct route rapidly
comes within 10% of the top score. In fact, given the long
stop sequences shared between routes, multiple routes are
often exactly tied for the top score. In that case, all route
candidates with the same score are ranked in a random
order, decreasing accuracy. Performance of the DTW scorer
is almost identical and thus omitted.

Fig. 2: Ordered matching scorer on the real NYC network.

G. Labeling Accuracy with Trip Changes

We extend the previous experiment to observation se-
quences where the vehicle switches route within the ob-
servation window, so the older observations belong to a
different route from the one the vehicle is now serving. If
we use the basic scorers that assign the same weight to all
observations, we can only expect reasonable predictions if
at least half of the observations come from the trip after
the change. Thus while longer observation sequences usually

mean higher accuracy, here they’d also mean more delay
until a trip change is detected. Furthermore, discarding old
observations is impossible in the online algorithm without
recomputing the score for the full observation sequence.

We address this issue by devaluing older score contribu-
tions of observations using exponential decay. This provides
relatively quick detection of the new route after the trip
change. This also lets us elide observation windows for
scoring, since very old observations barely impact the score
anyway. Instead, the time needed to correctly predict the new
route after a trip change is determined by the half-life, i.e.
the age of an observation at which it contributes half the
weight compared to the most recent observation.

Using exponential decay with a half-life of 10 minutes,
we compare the ordered matching and DTW scorers in Fig.
3. As before, the sample size for each data point is 250
observation sequences. We start with 30 observations from
the route before the trip change, and add new observations
one by one. Notice how the ordered matching scorer tends
to achieve the baseline established in Fig. 2 after only about
10 observations. Also notice how the DTW scorer tends to
need more observations to detect the route change.

H. Putting it all together: Confidence filtering and accuracy-
coverage tradeoffs.

To reduce labeling errors, the system can output no label at
all when it has low confidence in the result. This is vital when
label correctness matters more than labeling every trip. We
first estimate confidence by comparing the scores of the two
highest scoring route labels. Intuitively, a large gap implies
a lower chance of confusion and higher confidence in the
label. Using the same data set as above, Fig. 4(a-b) shows
the behavior of confident predictions when a score gap of
1.1× is required to output a label, for the DTW and ordered
matching scorers respectively. We use success rate (SR) and
error rate (ER) for probabilities of confidently outputting the
right and wrong labels, respectively. Though our response
coverage (SR+ER) is always substantial with this approach
— we output some label confidently over 30% of the time —
ER remains high for a while after a trip change. The scorer
is likely still returning the old trip then.

To further reduce errors after a trip change, we refine the
confidence criterion with a minimum score threshold. (This



Fig. 3: Trip labeling performance soon after a vehicle
switches trips, using exponential decay.

is only possible for the ordered matching scorer.) This comes
from the observation that while usually the score of the top
scoring line variant is well above 0.5, after a trip change
it tends to dip, as no route fully matches the observation
sequence. Fig. 4(c) shows results of combining the 1.1 gap
threshold with a 0.5 minimum absolute score requirement.
This decreases the error rate when the trip change was very
recent. Overall, confident labels can be returned within 5-10
location observations after a trip change.

To further evaluate the SR-ER tradeoffs in a real-world
setting, we used observation data from 50 different vehicles,
each for a full day, and after each observation inferred
the vehicle’s route. Fig. 5 shows SR distributions by trip
duration. We only used a relative score cutoff of 10%. SR
can be traded against ER with different cutoff parameters,
though they are correlated (Fig. 6).

Some trips, especially those above 40 minutes in duration,
are correctly labeled for most of the trip. This indicates
that with a carefully chosen subset of routes the system can
provide higher accuracy real-time information about vehicles
serving these routes with very high SR.

VI. DISCUSSION AND POSSIBLE EXTENSIONS

We saw that there is latency before we can detect the
new route after a trip change. One approach to decrease this
latency is to try to explicitly detect trip changes, and discard
all observations that were made before the trip change. Using
data from only the new trip reduces, though not drastically,
the time needed to detect the route for the new trip: compare
Ordered Matching performance between 3 and 2. In most

Fig. 4: Success rate and error rate with confidence thresh-
olding based on gap above 2nd-highest score and/or absolute
score. Clopper-Pearson 90% confidence intervals [3] are
shown.

Fig. 5: Distributions of success and error rates for trips from
full-day trajectories of 50 vehicles, by trip duration.

instances, the new trip starts near the previous trip’s endpoint
(see Fig. 7). We could exploit this by limiting route candidate
choices for the new trip to routes starting close to the
previous end point, at the risk of occasionally never retrieving
the correct route.

Our scoring method allows for various mechanisms to help
explicitly detect trip changes. For example, on average, the
absolute score of the highest scoring route drops after a
trip change. Furthermore, as the scoring algorithm creates
a matching between observations and stop locations, a trip
change is likely if the matching of the highest scoring route
includes the last stop of the route. We implemented trip
change detection using the latter method, and constrained
candidates for the new route to start close to the end of the
previous route. However it did not outperform the simpler
scheme using exponential decay as in Fig. 3. A likely
reason is that any wrong trip change detection will lead



Fig. 6: Effect of score gap and minimum score thresholds on
success and error rates for confident predictions, over full-
day trajectories of 50 vehicles.

Fig. 7: CDF of trip-to-trip transition distances, from a sample
of 5789 trip changes.

to false assumptions and almost certainly cause a wrong
prediction, and if multiple routes with different endpoints
share a common stretch with the observation sequence, this
is likely to occur. Additionally, per Fig. 2, even discarding
observations for the previous trip does not lead to an instant
good prediction for the new trip.

A different information channel that could be used to
predict routes after a trip change is past occurrences of trip
changes. Certain trip changes might occur more commonly
than others, e.g. from a route to its reverse route. We recorded
a training set of 4179 trip changes, and for each route, we
recorded the set and frequency of routes that were served
directly after a trip change from that route. With a network
of 1241 distinct routes, this limited data set only gave us
3.4 trip changes per route on average, with many even only
observed once. Nevertheless, using for each route the most
common followup route after the trip change as a prediction,
in the evaluation dataset of size 2094, 66% of route changes
were predicted correctly (in 3.6% of the cases, no prediction
was made as the route had not been encountered before).

While in general not a reliable predictor, this data could be
used as a prior when trying to assign probabilities to routes
soon after a trip change.

VII. CONCLUSION

We introduced the LiveTraVeL real-time transit labeling
algorithm, which matches a stream of transit vehicle posi-
tions to the transit route the vehicle is serving. To improve
its accuracy and runtime in dense areas with many nearby
transit routes, the system is separated into a lightweight
candidate retrieval phase and an ordered matching route
similarity scorer. The former pre-selects a smaller set of
route labels to reduce the load on the more computationally
expensive scorer. We prototyped and evaluated each compo-
nent individually to assess parameter choices and the effect

of noise and vehicle positions needed, and confirmed that
the scoring component is close to perfect accuracy in an
idealized setting. We then evaluated the accuracy of the full
system on a real-world dataset with over 1500 simulated
trips from the full New York City bus system (1241 routes).
Here, accuracy degrades to about 60% but this can be
addressed by only returning results when labeling confidence
is high. In this case, the system can return labels for about
40% of trips with a near-zero error rate. We further find
that the event of a vehicle switching to a new route can
be detected within 5-10 location updates (assuming 30-60
s location reporting intervals). Overall, these results show
promise for automatically generating route labels when they
are unavailable or when additional validation of manually
generated data is desired.
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