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ABSTRACT
We report on a new kind of group conversation on Twitter that we
call a group chat. These chats are periodic, synchronized group
conversations focused on specific topics and they exist at a massive
scale. The groups and the members of these groups are not explic-
itly known. Rather, members agree on a hashtag and a meeting
time (e.g., 3pm Pacific Time every Wednesday) to discuss a subject
of interest. Topics of these chats are numerous and varied. Some
are support groups, for example, post-partum depression and mood
disorder groups. Others are about a passionate interest: topics in-
clude skiing, photography, movies, wine and foodie communities.
We develop a definition of a group that is inspired by how sociolo-
gists define groups and present an algorithm for discovering groups.
We prove that our algorithms find all groups under certain assump-
tions. While these groups are of course known to the people who
participate in the discussions, what we do not believe is known is
the scale and variety of groups. We provide some insight into the
nature of these groups based on over two years of tweets. Finally,
we show that group chats are a growing phenomenon on Twitter
and hope that reporting their existence propels their growth even
further.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences;
H.2.8 [Information Systems]: Database Applications—Data Min-
ing

Keywords
Groups, Periodic time series, Online communities

1. INTRODUCTION
The term community has classically been associated with local

physical meetings of groups of people such as the Lions Club and
Rotary Club. Participation in these groups is primarily for social
capital, e.g., mutual support, cooperation, trust, good will, fellow-
ship and sympathy. Over time, many of these physical communities
have dissipated due to factors such as urban sprawl, two working
parents and time pressures [22].

Virtual communities on the other hand have surged in compar-
ison. The term virtual community was first coined in 1993 by
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Howard Rheingold [23] who described them as “social aggrega-
tions that emerge from the Net when enough people carry on pub-
lic discussions long enough, with sufficient human feeling to form
webs of personal relationships in cyberspace”. Virtual communi-
ties include forums, chat rooms, discussion boards, Usenet groups
and Yahoo groups [3].

In this paper, we report on a new kind of community on Twitter.
We call these communities group chats as they are periodic, syn-
chronized conversations focused on specific topics. Topics of these
chats are vast and varied. There are support groups for post-partum
depression and mood disorders. On the hobby side, conversations
span skiing, photography, wine and foodie communities. The way
that people communicate in a group conversation is via an agreed
upon hashtag (a short string preceded by a ‘#’ sign). For example,
in a group of passionate movie-goers, members agree to include
“#mtos” in every tweet. In addition to agreeing on a hashtag, mem-
bers also agree on a day and time, e.g., every Sunday evening at
20:00 GMT, and hence the abbreviation Movie Talk on Sunday.
Many of these groups are moderated to ensure that the meeting has
a focused subject, e.g., suspense movies. Live conversations among
like-minded people can be quite exhilarating for the participants,
whether tweeting or just watching.

Group chats are similar to virtual communities in that the pri-
mary venue for communicating is online. As with other commu-
nities, the purpose is to exchange knowledge, to share experiences,
to provide empathy and generally feel part of a community. Also,
groups chats can be sprawled out geographically and thus they en-
able a way to meet that would otherwise be difficult or impossi-
ble. However, they differ from virtual communities in that they use
the Twitter platform as a real-time mechanism to communicate in
groups. The real-time nature of these conversations imparts a live
feeling that is hard to duplicate in other online venues such as fo-
rums. Another key difference is that these groups are implicit and
therefore not easily discoverable. In contrast, the list of Yahoo/IRC
(Internet Relay Chat) groups can be searched and browsed.

Twitter group chats are similar to classical communities in that
they have fixed meeting times and talk live. They are different from
classical communities in that their meetings are not in the same
physical location and what they say is more abbreviated and public
to the world. Topics of group chats can be very niche, e.g., rare
disease communities, whereas the physical location restriction im-
posed by classical communities may make niche groups harder to
form.

That Twitter would be used to organize such discussions is quite
surprising. The 140 character limit imposes a succinctness that
seems unsuitable for group discussions. But the already large-scale
adoption of Twitter, coupled with a very real-time platform, has en-
abled these group conversations at a massive scale. Also surprising
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are support group chats. It is hard to imagine how support can be
given or received in 140 characters. But people have found a way!

The existence of group chats is certainly known to members who
participate in these chats. We have not seen any work in the pub-
lished literature reporting the number and variety of these groups.
Our work is focused on algorithms for automatically finding groups
at scale.

Contributions: We begin by presenting key properties of groups
abstracted from the sociology literature that culminate in a formal
definition of a group. The key components of the definition are
routine bounded-length meetings together with cohesion among the
active members. We found periodic, fixed duration meetings, such
as ‘every Wednesday at 2-3pm PST’, to be quite common among
online groups. A predictable, agreed-upon meeting time helps peo-
ple plan their schedule and focus for a bounded time on a particu-
lar subject. However, periodic bounded duration meetings are not
enough. For example, weekly television shows such as ‘Dancing
With the Stars’ are extremely periodic, fixed duration meetings,
but are not group conversations. Users just shout their opinions,
but do not converse with others. The last component of the defini-
tion is cohesion in the group which we measure by communication
among active group members.

Next, we propose an algorithm for finding groups. We begin
with a large collection of candidate groups and repeatedly remove
those that do not satisfy our definition. Every hashtag is an initial
candidate. In the first step, the algorithm removes candidates that
do not have routine meetings. To identify these, for each candidate,
the time series of exchanged messages is computed and a Fourier
transform based method is applied to the time series to identify pe-
riodic candidates. At this point, the candidates may contain those
that “meet” all day, for example, ‘Follow Friday’. In order to elim-
inate those, we restrict ourselves to groups where the propensity
of messages are exchanged in a short duration. At this point, the
remaining candidates may still include those that meet but never
really engage in a conversation. In the final step we remove candi-
dates that are not cohesive. What remains are the groups.

We then prove that hashtags that are close to group chats are
accepted by our algorithm and hashtags that are far from group
chats are rejected. Specifically, if a group meets sufficiently many
times, group meetings are well-separated, and a reasonable num-
ber of tweets are exchanged per meeting, then we prove that our
algorithm will accept the hashtag, under certain assumptions. On
the flip side, if a group has no synchronized time when it meets, or
if the meetings are irregularly-spaced apart, or if the group is not
cohesive, we prove that our algorithm will reject the hashtag.

Finally, we run our algorithm over two years of Twitter data.
We find 1.4K groups involving 2.3M users. To provide a glimpse
into these groups, we show a distribution of the periods of these
groups, demonstrating that most groups meet weekly. To validate
the quality of the groups discovered, we randomly sample 10% of
the groups and report on the categories of groups represented in the
sample, finding that most are interest-driven groups such as mu-
sic enthusiasts, sports lovers, foodie communities. We also find
many support and self-help groups. Finally, we compute the birth
and death of these groups showing the cumulative number of living
groups over time. The data suggests that group chats are a growing
phenomena. We hope that this discovery instigates the creation of
even more group chats on Twitter.

2. RELATED WORK
Twitter group chats: In the published literature, we found very little
discussion of Twitter group chats. There are articles discussing the

benefits of a single education group chat called #edchat [9, 14], but
nothing reporting the number and variety. Budak and Agrawal [6]
investigate characteristics of education group chats that lead to con-
tinued individual participation. Our work is aimed at methods for
automatically discovering group chats. While we did find a crowd-
sourced spreadsheet [24] of group chats, in our experience, there
are many chats listed in this spreadsheet that are now defunct, many
chats that are missing (possibly because the moderator of the group
chat was not aware of the spreadsheet), some that do not have pre-
dictable meetings, and others that are not truly group conversations,
e.g., one-time chats.

Definition of groups: Many different definitions of groups have
been proposed in sociology literature, for example, “A group is a
collection of individuals who have relations to one another” [7], “A
group is a bounded set of patterned relations among members” [1],
and “A group is two or more individuals who are connected by and
within social relationships” [13]. An overview of definitions of on-
line communities provided by various disciplines is presented in
the survey by Iriberri and Leroy [16]. These definitions are qualita-
tive, and involve explicitly defined groups. We, on the other hand,
provide a quantitative definition of a group and study groups that
are implicit and hence not easily discoverable.

Nature and formation of groups: There is extensive literature on
the formation of groups, the nature and purpose of groups that ex-
ist, and the causes of their success or failure. Besides focusing on
the life-cycles of online communities and factors that contribute to
their success, the survey by Iriberri and Leroy [16] also includes
discussion of the “importance and benefits” of online communi-
ties, and of the types of communities that exist. Group formation
on LiveJournal and DBLP data has been studied in [2]. The nature
of the communities that exist in Yahoo! groups has been exam-
ined in [3], wherein factors influencing stickiness of a user with a
group have been explored. The factors that motivate participants to
stay with a group have been explored in [4]. Surveys of the pub-
lic studying how many people participate in online groups and for
what purpose are instructive: for example, a 2001 study found that
84% of Internet users participated in online groups, and a survey
conducted in 2010 found that 23% of Internet users living with a
chronic ailment have looked for support online, and people with
rare conditions are even more likely to do so [12, 15, 17]. In con-
trast to this line of work, our focus is on algorithmically identifying
groups in Twitter. Investigating the nature and formation of Twitter
groups is a promising direction for future work.

Determining periodicity: Our algorithm for detecting group chats
uses Fourier analysis to help determine whether a hashtag has reg-
ular meetings. Many different approaches have been proposed for
periodicity detection in time-series data, for example, using Fourier
analysis [25] and Wavelet transforms [20]. We adapt the autoperiod
method proposed in [25].

3. PRELIMINARIES
In this section, we work towards a definition of a group. We

are not aware of any quantitative definitions of a group in the so-
ciology literature. Instead, there are many qualitative definitions
with no convergence towards a single definition [11]. We begin by
describing three key properties of a group:

1. REGULAR: In a group, people who share an interest meet on
a regular basis over a prolonged period of time.

2. SYNCHRONIZED: In a group, meetings occur for a fixed du-
ration at a specified time.
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3. COHESIVE: Members in a group communicate with each
other over the course of many meetings.

These properties can be instantiated in many ways. In this paper,
we interpret them in one way that leads to our definition of a group.

DEFINITION 3.1. A set of people form a group G if every τ
days some subset of G meet for a duration of l hours where at least
ν fraction of pairs of users in G exchange messages during each
meeting.

Observe that this definition captures all of the key properties that
we outlined above. Meetings are regular because they occur every
τ days. They are synchronized because they last l hours and they
are cohesive because at least ν fraction of pairs communicate.

To motivate each component of the definition in the specific con-
text of Twitter, we describe a few crucial examples that steered our
thinking. Note first that the candidate set of groups is defined by
the set of hashtags and the candidate members of a group are de-
fined by users who tweet with the hashtag. The first component
of our definition corresponds to periodic meetings. The justifica-
tion for this property is that in order for group connections to form,
members must meet predictably over the course of many meetings.
We observed this property in the group chat hashtags that we dis-
covered such as Movie Talk on Sunday, which meets every Sunday
(see Figure 1(a) for a time series of tweets for #mtos). Even of-
fline meetings of local support groups often occur on a weekly or
monthly basis. Note that in order to satisfy Property 1, meetings
need not necessarily occur every τ days, but periodic meetings are
the focus of the present work.

However, periodic meetings are not enough since there are hash-
tags such as #monday that surge once a week but are not group con-
versations (see Figure 1(b) for a time-series of #monday tweets).
Users simply append #monday to their tweets on Monday. A key
difference between such hashtags and group conversations is that
#monday surges all day Monday, while group meetings surge for
only a fixed duration (Figure 2). This is how we arrived at the
second component of our definition, that the group meet for a fixed
duration of time. Offline meetings also follow such a time-bounded
pattern.

However, even these two requirements are not sufficient since
there are hashtags tied to TV shows such as Dancing with the Stars
which surge for one hour every week when the TV show airs. Users
are not communicating with each other, just shouting with the goal
of having their tweet broadcast on live television. This motivates
the third aspect of our definition, cohesion. The difference between
such a TV show and a real group conversation is that users ac-
tually communicate with each other during a group conversation.
In the context of Twitter, we observe this behavior via direct @-
messaging between group members.

We note that our definition of a group may be improved in a num-
ber of ways. For example, there may be groups that meet regularly
but are not periodic, e.g., meet at least once a week but schedule the
next meeting at the end of each meeting. We miss such groups since
they do not have a periodic structure. Other groups may meet, but
not use a hashtag. Again, our work misses such groups. We leave
the question of alternate group definitions as a subject for future
work.

3.1 Notation
Each tweet d is associated with a timestamp t(d) that takes inte-

ger values between 0 and T . The unit of time can be chosen to be
sufficiently granular (say, seconds or milliseconds) so that tweets
can be assumed to occur only at integral time units. The timestamp

0 can correspond to a point of time before Twitter existed, e.g., be-
ginning of the year 2000. Let H denote the set of distinct hashtags
contained in the text of all tweets and Hper ⊆ H denote the set
of periodic hashtags. For a hashtag h ∈ H , let fh(.) denote the
timeline function for h, that is, fh(t) equals the number of tweets
containing hashtag h that occurred at time t. Denote the total num-
ber of tweets containing h as αh. Denote the period of a periodic
hashtag h by τh. Denote the number of meetings associated with a
periodic and synchronized hashtag h bymh. We omit the subscript
when the hashtag is clear from the context. Denote the maximum
allowed duration of a meeting by l. While our definition of a group
assumes that the period is in days and the meeting duration is in
hours, from here onwards, we assume that both τ and l are in the
same units.

Figure 1: Number of tweets per hour for the hashtag mtos (left)
and the hashtag monday (right) over a three month timeframe
(11/2011 - 1/2013). Both hashtags are periodic, but monday is
not a group conversation.

Figure 2: Number of tweets per hour for the hashtag mtos (left)
and the hashtag monday (right) over a one week timeframe
(last week of 1/2013). The hashtag monday is active all day,
while mtos is active for a one hour duration.

4. FINDING GROUP CHATS ON TWITTER
Our method for determining the set of group chats on Twitter is

outlined in Algorithm 1. We first identify the set of periodic hash-
tags on Twitter. Next, for each periodic hashtag, we check whether
meetings using the hashtag occur at a predefined time during each
period. If such meetings exist, we compute the meeting time, and
otherwise, exclude the hashtag from further consideration. We then
check if there is sufficient communication among the top users of
the hashtag, and if not, exclude the hashtag. Group chats corre-
spond to the remaining periodic hashtags.

227



Algorithm 1 FINDTWITTERGROUPCHATS

Input: Twitter data over a period of time, consisting of Twitter han-
dle (user alias), timestamp, users that are @-messaged in the tweet.
Output: Set of hashtags that are group chats, along with
the associated meeting time and other metadata for each group
chat.
1: (REGULAR) Identify the setHper of periodic hashtags on Twit-

ter, along with the period for each hashtag. (§4.1)
2: for each periodic hashtag h in Hper do
3: (SYNCHRONIZED) Check whether meetings using hashtag h

occur at a predefined time during each period. If yes, com-
pute the meeting time, and otherwise, exclude h from the set
of candidate group chats in Hper . (§4.2)

4: (COHESIVE) Determine if there is sufficient communication
among the top users of hashtag h. If not, exclude h from the
set of candidate group chats in Hper . (§4.3)

5: Return the set of remaining hashtags in Hper , along with the
meeting time and other metadata.

Algorithm 2 FINDPERIODICHASHTAGS

Input: Twitter data over a period of time, consisting of Twitter
handle (user alias), timestamp, tweet text and other metadata for
each tweet; Periodicity threshold, δ < 1

2
.

Output: List of periodic hashtags, along with the period for each
hashtag.
1: Identify the set H of distinct hashtags contained in text of all

tweets.
2: for each hashtag h in H do
3: Determine the timeline function fh for hashtag h.
4: Compute the Fourier transform of fh and obtain Fourier

coefficients f̂(.) for a large set of candidate frequencies,
{1/T1, . . . , 1/Tr}. (§4.1.1)

5: Compute the autocorrelation Ã(.) of fh for the correspond-
ing set of candidate periods, {T1, . . . , Tr}. (§4.1.2)

6: Define the periodicity coefficient for period Tk as S(Tk) :=
|f̂(1/Tk)|
|f̂(0)| ·

|Ã(Tk)|
|Ã(0)| , for 1 ≤ k ≤ r. (§4.1.3)

7: Determine the candidate period τh with the largest period-
icity coefficient, that is, τh := arg max1≤k≤r S(Tk), and
output 〈h, τh〉 if the corresponding coefficient exceeds the
threshold, that is, if S(τh) ≥ δ. (§4.1.3)

4.1 Regular
The main technical component of our approach is to determine

whether a hashtag is periodic (Property 1). We first present the
desiderata through an example, and then design an algorithm to
satisfy them.

Figure 1(a) shows part of the timeline for the hashtag #mtos.
The group corresponding to this hashtag meets at a predefined time
every week. We observe that the hashtag is mentioned frequently
during the weekly meetings and infrequently between sessions, re-
sulting in a timeline that is visually periodic. However, the number
of occurrences of the hashtag varies widely across meetings. Fur-
ther, some meetings may not occur, e.g., around Christmas. Ad-
ditionally, there may be a few occurrences of the hashtag between
meetings, e.g., for generating awareness about upcoming meetings.

Our algorithm for detecting periodicity employs the Fourier trans-
form as a key ingredient for achieving robustness to the above fac-
tors. Given a function f and a frequency ξ, the Fourier transform
produces a Fourier coefficient f̂(ξ) ∈ C. The Fourier transform
satisfies the following property: If f is periodic over a large inter-

val with period τ = 1/ξ, then the magnitude of the corresponding
Fourier coefficient, |f̂(ξ)| is large. This property is robust to vari-
ations in the intensity of f from cycle to cycle and addition of a
small amount of noise. Hence, a first attempt would be to check
whether the largest Fourier coefficient is comparable in magnitude
to the total number of tweets containing a hashtag and if so, declare
the hashtag to be periodic with the corresponding period.

However, the converse of the above property is not true: in par-
ticular, |f̂(ξ′)| is also large whenever ξ′ = kξ is an integer multiple
of ξ. For example, a group chat that occurs at noon every alternate
Monday would have a strong Fourier coefficient at the once-per-
two-week frequency, but also at a frequency of once per week and
even once per day. To distinguish the base frequency ξ from mul-
tiples kξ, we measure the autocorrelation of a hashtag’s timeline.
Given a function f , the autocorrelation Af (t) is a measure of the
similarity between f and the same function f shifted by t.

The autocorrelation satisfies a property similar to that of the
Fourier transform: if f is periodic over a large interval with pe-
riod τ , then Af (τ) is large. Intuitively, a periodic function shifted
by its period (or integer multiples of period) aligns well with the
original function, resulting in a large autocorrelation comparable
to the autocorrelation at t = 0 (the function with itself). In other
words, the autocorrelation is large for integer multiples kτ of the
base period, rather than periods 1/(kξ) = τ/k associated with in-
teger multiples of the frequency ξ as is the case with the Fourier
transform. The only periods that have both large Fourier coeffi-
cients and autocorrelations should be close to the true period τ .

Algorithm 2 formalizes the above intuition. We first determine
the timeline function for a hashtag. Then, we compute its Fourier
transform for a large set of candidate frequencies as well as autocor-
relation for the corresponding candidate periods. The periodicity
coefficient for each candidate period is computed as the product of
two ratios: the ratio of the corresponding Fourier coefficient to the
total number of tweets and the ratio of the autocorrelation for this
period to the autocorrelation of the function with itself. Since these
two ratios will be large at τ for a periodic function with period τ ,
the algorithm checks if the largest periodicity coefficient exceeds
a given threshold, and if yes, outputs the hashtag along with the
corresponding period. We provide the details below.

The idea of combining the Fourier transform with autocorrela-
tion has been explored by Vlachos et al. [25] in their work on de-
tecting periodicity. Our method differs in two respects. First, while
they use the discrete Fourier transform (DFT) of f , we obtain sam-
ples from the continuous Fourier transform. At the cost of requiring
more computation, this choice allows us to measure Fourier coef-
ficients for all frequencies of interest to us, for the whole data set
at once. The DFT only produces frequencies which are multiples
of the inverse total window length: for example, when examin-
ing six weeks of data, the DFT could measure frequencies of once
every 0.75 weeks, once every 1.5 weeks or once every 3 weeks,
but not once per week or once per two weeks. Second, they dis-
tinguish between ‘hills’ and ‘valleys’ of the autocorrelation, likely
to compensate for the lack of precision in their choice of Fourier
coefficients. In our implementation, we combine Fourier and au-
tocorrelation coefficients by simply multiplying the closest known
Fourier and autocorrelation coefficients to a candidate period.

For detecting periodic hashtags, we first attempted to use Klein-
berg’s burst detection algorithm [19], which detects periods of high
activity using a generative model that switches between a low-
activity state and a high-activity “bursty” state. However, we chose
the Fourier analysis based method instead, for two reasons. First,
Kleinberg’s model has a parameter that determines how easily the
underlying model switches to a bursty state, and we had trouble
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finding a value which worked for all group chats. Second, Klein-
berg’s method does not detect whether or not the bursts are of a
periodic nature, nor does it produce the period; both of these are
natural outputs of the Fourier analysis based method. Naïve at-
tempts to measure the period as an average time between bursts
produced by Kleinberg’s method are thwarted by missing meetings
or short bursts that occur between meetings, although it is possi-
ble that some adaptation of Kleinberg’s algorithm could overcome
these limitations.

4.1.1 The Fourier Transform
Given a function f : R→ C, the Fourier transform f̂ : R→ C

applied to a frequency ξ ∈ R is defined as:

f̂(ξ) =

∫ ∞
−∞

f(t)e−2πitξdt. (1)

Since fh is a discrete function whereas the above definition is for
continuous functions, we can define f as a function that has a
spike of area fh(t) around discrete times t: f(t′) := fh(t)/ε for
t− ε/2 ≤ t′ ≤ t+ ε/2. A spike of area fh(t) around time t con-
tributes approximately fh(t) · e−2πitξ to the Fourier transform (1),
which becomes exact as the width of the spike tends to 0. Hence,
we compute the Fourier transform as:

f̂(ξ) =
∑

0≤t≤T

fh(t) · e−2πitξ. (2)

The Fourier coefficient with the largest magnitude is achieved at
ξ = 0 and equals the total number of tweets with the hashtag, that
is, for any ξ, |f̂(ξ)| ≤ f̂(0) = αh.

4.1.2 Autocorrelation
The autocorrelation of a function f : R → C with respect to a

period τ is defined as:

Af (τ) =

∫ ∞
−∞

f(t+ τ)f(t)dt.

The magnitude of the autocorrelation |Af (τ)| is always highest at
τ = 0. Autocorrelations can be computed from the Fourier trans-
form as:

Af (τ) =

∫ ∞
−∞
|f̂(ξ)|2e−2πiξτdξ. (3)

4.1.3 The Periodicity Coefficient
Given the timeline function fh for a hashtag, we first compute

the Fourier coefficients f̂(ξj) for NF equally spaced frequencies
ξj in a fixed range [−1/τF , 1/τF ] using (2). (F stands for Fourier.
In our implementation, τF was twelve hours.) Then, we use the
computed Fourier coefficients to approximate the autocorrelation
(3) as:

Ã(τk) =

r∑
j=1

|f̂(ξj)|2e−2πiξjτk ,

for a large but fixed set of periods τk.
Now, define the periodicity coefficient for a candidate period T

as:

S(τ) :=
|f̂(ξ∗)|
|f̂(0)|

· |Ã(τ∗)|
|Ã(0)|

,

where ξ∗ and τ∗ are the closest available frequency and period in
the sets {ξi} and {τk}, respectively. Note that S(τ) is always be-
tween 0 and 1. Then, we determine the period τ with the largest

Algorithm 3 SYNCHRONIZEDMEETINGS

Input: Timeline function f and period τ for a given periodic hash-
tag h ∈ Hper; Maximum meeting duration, l; Synchronization
threshold, γ.
Output: Boolean flag (‘valid’/‘invalid’) denoting whether h
has synchronized meetings; (if h is valid) Meeting start time
t̃.
1: Define compressed timeline function,
g(t) :=

∑
0≤i≤bT /τc−1 f(t+ i · τ), for 0 ≤ t < τ .

2: Define score associated with a potential meeting that starts at
offset t during every period as
β(t) := 1

α
·
∑

0≤z<l g((t+ z) mod τ), for 0 ≤ t < τ .
3: Determine the candidate meeting start time t̃ with the largest

score, that is, t̃ := arg max0≤t<τ β(t), and output 〈h, ‘valid’,
t̃〉 if the corresponding score exceeds the threshold, that is, if
β(t̃) ≥ γ, and output 〈h, ‘invalid’〉 otherwise.

periodicity coefficient out of a set of candidate periods and return
it if the corresponding coefficient exceeds the periodicity threshold
δ, that is, if S(τ) ≥ δ.

It is worth noting that using the true autocorrelation Afh(.) val-
ues corresponding to fh is problematic. If the unit of time is suf-
ficiently granular (say, seconds), then it is very likely that the fh
shifted by its period will not align with itself. For example, the
timelines for two consecutive weekly meetings for #mtos would
look sufficiently different when zoomed in. In the extreme case,
tweets may occur during even seconds for even numbered weeks
and during odd seconds for odd numbered weeks so that there is no
alignment for a shift by one week, resulting in an autocorrelation
of zero.

We address this problem by bounding the frequencies ξj at which
we sample the Fourier transform so that the maximum frequency is
at most two cycles per day. Then, the approximate autocorrelation
Ã(.), loosely speaking, can only see the approximate time at which
a tweet happened, to within half a day or so.

4.1.4 Incremental Updates
As more tweets arrive, it is possible to recompute the periodicity

coefficients and the estimated period of a hashtag in time propor-
tional to the number of new tweets. Given the Fourier coefficients,
f̂(1/T1), . . . , f̂(Tr) computed for timeline up to time T , and given
additional timeline from T to T ′, the new Fourier coefficients can
be computed as:

f̂ ′(1/Tj) =
∑

0≤t≤T

fh(t) · e−2πit/Tj +
∑

T<t≤T ′

fh(t) · e−2πit/Tj

= f̂(1/Tj) +
∑

T<t≤T ′

fh(t) · e−2πit/Tj .

The remaining steps of recomputing the autocorrelation and finding
the highest-scoring period have a running time that depends on the
number of candidate periods (r) but not the total number of tweets.

4.2 Synchronized
The intuition underlying the algorithm for this component is that

synchronized meetings usually last for an hour or two, but not for
the whole day: most people simply do not have the time to partici-
pate and listen to others for very long. Just like in the case of offline
physical groups, it is unrealistic to expect online users to participate
in a focused meeting and converse with each other for more than
a few hours. Hence, we require that a meeting lasts for a short
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duration, say, at most 3 hours. Further, for hashtags used for syn-
chronized meetings, the usage of the hashtag predominantly occurs
during the meeting window as opposed to outside the meeting.

Algorithm 3 formalizes the above intuition. Given a periodic
hashtag h with its period, τ and timeline function f , we obtain a
compressed timeline g by aggregating activity at a given time offset
across different periods. Then, for various candidate time offsets,
we check how often h is used within a window of l (maximum
duration of a meeting) from the candidate time, aggregated across
different periods and thereby compute the most likely meeting start
time. Then, we check whether there are sufficient number of tweets
containing the hashtag during the corresponding meeting window,
compared to the total number of tweets containing the hashtag. If
yes, we output the most likely meeting start time and otherwise,
mark h as ‘invalid’.

Note that Algorithm 3 requires the period τ to exactly match the
true period of the hashtag so that meetings across different periods
are aligned in the compressed timeline. However, the timeline as-
sociated with the hashtag may not correspond to a perfect periodic
function and hence the period computed by Algorithm 2 may devi-
ate slightly from the true period. We make use of the fact that group
chats on Twitter have routine meetings whose period is in multiple
of days, and address this issue by rounding the period computed by
Algorithm 2 to the nearest day.

4.3 Cohesive
In the final step, our algorithm excludes hashtags that are not co-

hesive. To measure this quantity, we estimate the communication
among the k most active members who use the hashtag h during
regular, synchronized meetings. Our intuition is that members of
a healthy group will look forward to communicating with one an-
other during each meeting. Let V be the set of k users who par-
ticipated in the most meetings of the hashtag. For 1 ≤ i ≤ m,
let Ei capture the directed communication edges among users in V
during the ith meeting. For example, if user u ∈ V @-messages
two other top users v and w during the ith meeting, we include
the two directed edges (u, v) and (u,w) in Ei. We define the co-
hesiveness of a hashtag by the average number of edges across all
meetings, that is, cohesive(h) := 1

m

∑m
i=1 |Ei|, where m is the

number of meetings for hashtag h. The larger this average interac-
tion, the more cohesive the group. Given a threshold ψ, we exclude
hashtags where cohesive(h) < ψ.

5. THEORETICAL ANALYSIS OF ALGO-
RITHM 1

We next prove that hashtags that are close to group chats are
accepted by our algorithm and hashtags that are far from group
chats are rejected. Specifically, if a group meets sufficiently many
times, if group meetings are well-separated, and if a reasonable
number of messages are exchanged per meeting, then we prove that
our algorithm will accept the hashtag, under certain assumptions
(§5.1). On the flip side, we prove that our algorithm will reject
hashtags that are not cohesive, or are generated from models of
not-regular or not-synchronized hashtags (§5.2).

5.1 Algorithm 1 accepts group chats
We next define the notion of a well-behaved group chat and show

that our algorithm will accept a well-behaved group chat under cer-
tain assumptions.

DEFINITION 5.1. A set of tweets forms a well-behaved group
chat if all of the following are true.

• There are m meetings of duration l separated by a period τ ,
for somem, l and τ . (The jth meeting interval is [jτ, jτ+l].)

• During each of the meeting intervals, at least ψ pairs of the
top k group members exchange messages.

• Tweets are sent at a higher rate within meetings than outside
of meetings. That is: at least γ(nmin + n−) tweets are sent
during every meeting, where γ ≥ 1/τ is the threshold of Al-
gorithm 3, nmin is the smallest number of tweets sent during
any meeting, and n− is the average number of tweets sent
between two adjacent meetings. No tweets are sent before
the first meeting or after the last. We denote by nj the num-
ber of tweets in the j-th meeting, and by nmin and nmax the
smallest and largest values nj .

We empirically validated that a typical group chat resembles a well-
behaved group chat.

THEOREM 5.2. Consider any well-behaved group chat that also
satisfies the following properties:

• (Technical conditions.) There are at least three meetings.
The period τ is not shorter or longer than the range of peri-
ods considered by Algorithm 2 (periodicity). The duration l
is shorter than half the shortest period considered by Algo-
rithm 2, and also no longer than the duration l of Algorithm 3
(synchronization).

• (Quantifying well-behavedness.) The following inequality
holds, where η = nmax/nmin, ρ = n−/nmin and δ < 1

2
is the threshold used by Algorithm 2’.

1

2η2

(
1− 2πl

τ
− ρ
)

>max

{
δ, 3ρ,

2πl

τ
+
η2

4

(
1 + 6

η + ρ− 1

ρ+ 1

)}
(4)

• (*) The timeline is a step function, where the number of tweets
during each second of the j-th meeting is λj = nj/l, and the
number of tweets during any second which is between meet-
ings is exactly λ− = n−/(τ − l).

Consider a modified (**) version of Algorithm 2 which computes
autocorrelations exactly: call this Algorithm 2’, and the resulting
group chats algorithm Algorithm 1’. Then, Algorithm 1’ will ac-
cept this chat as a group chat. It will also return the correct meeting
start time to within l, and will report the correct period τ with error
of at most l + ε, where ε is the largest difference between two ad-
jacent periods considered by either the Fourier or autocorrelation
parts of Algorithm 2.

Note 1. The parts marked (*) and (**) are added to simplify the
proof; we believe a version could be proved which does not have
the step function condition (*) and applies to the true Algorithm 1
(**). (§A.1 contains the only results that depend on (*) and (**).)
Although modifying the algorithm to compute autocorrelation ex-
actly makes the proof simpler, it also forces us to impose a strong
condition on the timeline of tweet rates for the given hashtag. The
true second-by-second timeline of a typical chat has zero tweets
in most seconds, with spikes at certain seconds where one or two
tweets occurred, and the exact autocorrelation of such a timeline
will typically be close to zero: this is why we are forced to assume
the timeline is a step function. Our true implementation of auto-
correlation uses a sample of Fourier coefficients, and is therefore
insensitive to variations on the order of half a day or less.
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Note 2. To interpret (4), note that that for a very strongly-structured
group chat, we can expect η to be close to 1 (meaning all meet-
ings have similar attendance), ρ close to 0 (the group’s hashtag is
rarely used outside meetings), and l/τ to be quite small (meetings
are short compared to the time between). Therefore the left side
of the equation will be about 1/2, and the right side will be about
max{δ, 1/4}.

We defer the proof to Appendix A.

5.2 Algorithm 1 rejects non-group chats
We next show that, with high probability, our algorithm will re-

ject hashtags that are not cohesive, or are obtained from generative
models representing non-synchronized or non-regular hashtags. As
our algorithm explicitly rejects non-cohesive hashtags, we focus on
the two generative models.

We begin by describing a random process that captures the rhythm
of a typical non-synchronized hashtag. Our observations suggest
that a typical hashtag has a daily cycle where its usage increases
during waking hours and declines during sleeping hours. Such a
hashtag has no short (e.g., 1 hour) time window where most mes-
sages are exchanged, as corroborated by [21]. Prior to describing
the model, we describe what it means for a group’s messages to be
diffuse, i.e., not sharply focused on a short time window.

DEFINITION 5.3 ((γ, l)-DIFFUSE). We say a probability dis-
tribution p over an interval [a, b] is (γ, l)-diffuse if there is no
length-l sub-interval I = [t, t + l] such that Prx∼p[x ∈ I] > γ.
A function µ : R → R≥0 is (γ, l)-diffuse over an interval [a, b] if

the normalized distribution µ/
(∫ b

a
µ(t)dt

)
is. Similarly, we say a

timeline t1, . . . , tm ∈ [a, b] is (γ, l)-diffuse if at most γmmessages
lie in any length-l subinterval [t, t+ l].

DEFINITION 5.4. In the non-synchronized model, messages are
generated according to a Poisson process with a varying rate λ(t).
We assume that λ(t) is periodic over an interval [0, T ] with a pe-
riod of one day, and is not concentrated in any short daily interval,
that is, (γ, l)-diffuse over a daily period.

We next present a random process that captures non-regular hash-
tags that do not have periodic meetings but have a fixed rate of
meetings on average.

DEFINITION 5.5. In the non-regular model, meeting times µ1,
. . . , µm ∈ [0, T ] are sampled according to a Poisson process with
a fixed rate λ. Within the j-th meeting, N messages are emitted in
the range [µj , µj + l] (the exact times are allowed to be arbitrary
and non-random).

We state the theorem below and defer the proof to Appendix B.

THEOREM 5.6. If a set of messages for a hashtag is generated
from the non-synchronized model (Definition 5.4), from the non-
regular model (Definition 5.5), or does not satisfy cohesion (§4.3),
then Algorithm 1 will reject it with probability 1− o(1).

6. EXPERIMENTS
We present the results of running our algorithm on over two years

of Twitter data. We begin with the experimental setup and then
explain we found a periodicity threshold to select periodic hashtags.
We describe how we selected synchronized and cohesive hashtags
from periodic ones. We give a histogram showing how often groups
typically meet. To provide a view into the subjects of these groups,
we sample a subset of group chats and report on the distribution
of categories into a popular taxonomy. Finally, we show that the
number of living groups has grown over time.

6.1 Experimental Setup
Our experiments are based on over 28 months of English tweets

starting from 9/2010. Given the scale of this data (several petabytes),
we implemented our algorithm in the SCOPE language [8] and ran
it over a large distributed computing cluster. We first obtained the
set of all distinct hashtags used in this timeframe, and the timeline
of tweets associated with each hashtag. We also removed under-
utilized hashtags, that is, those that received less than 20 tweets, as
well as those used by less than 10 users over the duration of the ex-
periment. Then we identified the periodic hashtags, as we describe
next.

Periodicity Threshold: The method described in §4.1 produces
the most likely period and the corresponding periodicity coefficient
for every hashtag. We now discuss how we selected the threshold,
δ to distinguish between periodic and not periodic hashtags. Our
methodology was to randomly sample hashtags and then manually
label whether the hashtag was periodic, by looking at the timeline
of tweets for the hashtag. A purely random sample however favors
hashtags with score between 0 and 0.1 since most hashtags are not
periodic. Instead, we drew a stratified sample where there were five
hashtags with score in [0, 0.1], five in [0.1, 0.2], and so on. The
result of this manual tagging is shown in Figure 3 where the binary
label of the hashtag is shown on the x-axis (1 denotes periodic) and
the periodicity coefficient is shown on the y-axis. There is a good
separation between the periodic and not periodic hashtags when the
score is set to 1

4
. We also computed the F-measure (harmonic mean

of precision and recall) for different choices of the threshold, and
confirmed that the maximum is achieved at δ = 1

4
. We then kept

all hashtags with a periodicity score ≥ 1
4

.
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Figure 3: Result of manually labeling a stratified sample of
hashtags: 1 denotes periodic and 0 not periodic.

Group Chats Analysis: Next we describe how we found the group
chats. We selected all hashtags with periodicity threshold at least 1

4
,

as justified above. In addition, we only kept periodic hashtags that
met some minimum number of times, set to 5 in our experiments.
In other words, if the period of a hashtag is one week, we require at
least five weekly meetings. Without this requirement, groups that
meet just twice but spaced say seventeen days apart, appear to have
a period of seventeen days.

For each remaining hashtag, we then checked whether the meet-
ings were synchronized during each period. We set the maximum
allowed duration of a meeting (l) to be two hours and the synchro-
nization threshold, γ = 0.2. These choices require that at least a
sizable fraction of tweets (≥ 20%) appear within two hours of the
meeting start time.

Finally, we consider cohesion (see §4.3). For each candidate
hashtag, we compute cohesion with respect to the k most commit-
ted users measured by meeting attendance, and set the cohesion
threshold, ψ = k − 1. Thus, we restrict ourselves to hashtags for
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which the average interaction among the top k members is at least
k − 1. This structure is realized by, for example, a moderator that
routinely converses with k−1 other members. Note that ψ = k−1
does not guarantee connectivity, just that ψ < k − 1 guarantees
disconnectivity. The latter could reflect a group that is just forming
or dissolving or simply not cohesive. In our experiments, we set
k = 5. We are left with 1.4K groups involving 2.3M users (count-
ing each user multiple times if they participate in multiple group
chats) which are the subject of this study.

We show the distribution of periods for group chats in Figure 4.
For every candidate value of period in days, the chart shows a his-
togram of the number of group chats with that period. Most group
chat hashtags have a weekly period (80% of the chats). However,
there are some that meet every day, e.g., those tied to daily radio
shows, and some that meet biweekly. For the rest of this section,
we focus our discussion on weekly group chats.
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Figure 4: Distribution of periods of hashtags with periodicity
coefficient at least 1

4
.

To understand the types of groups we found, we randomly sam-
pled 10% of the recent group chat hashtags and manually catego-
rized the hashtags into the top-level of the Open Directory Project
(ODP) taxonomy. For 95% of the group chats, we could catego-
rize the group and a breakdown appears in Table 1. For 5%, we
could not categorize based on recent tweets. The table shows that a
large fraction of the groups are Arts related, including groups tied to
weekly TV shows, radio shows, book clubs, craft clubs, and so on.
Science is the next largest category, with education chats dominat-
ing the category. In these chats, teachers discuss ways to be more
effective educators. There are also a large number of Health-related
groups including support groups for coping with addiction and bor-
derline personality disorder. Examples of groups in the Business
category include those discussing ways to prevent fraud (e.g., pre-
venting financial crime against seniors), and how to be a digital
leader. A small number of groups are Foreign – while we restricted
to English tweets only, some groups communicate in multiple lan-
guages. In the remaining categories, there are sports enthusiasts
and foodie groups. Finally, there are contest-driven chats where
the goal is to give away a prize to the person who can answer the
most trivia questions.

Progression of a Group Chat: Group chats on Twitter follow a
particular etiquette. Many chats are moderated and the moderator
typically keeps the chat on pace by asking a series of questions.
Tweets are typically in the format “q1: ...” for the first question.
The moderator typically spaces out questions over an even interval
and tries to keep the conversation from deviating off topic. Some of
the more successful moderators are able to attract guest tweeters,
who are typically celebrities in that area. For example, a wine chat
meeting featuring the celebrity Rodney Strong was quite successful
(well attended). Moderators typically start the session by tweeting
frequent members to join the conversation “chat starting in X min-

Category % Groups Examples
Arts 47% TV/Radio, Writing, Music, Crafts
Science 12% Education, Agricultural
Health 10% Addiction, Self-help, Mood Disorder
Business 9% Preventing Fraud, Digital Leaders
Don’t Know 5%
World 5% Foreign
Sports 3% Basketball, Soccer
Society 3% Better blogger, Rights activist
Recreation 3% Foodie
Games 2% Prize-driven

Table 1: Category distribution of 10% random sample of Twit-
ter weekly group chats.

utes”. Some chats have web pages announcing the topic of the next
meeting, together with archives of previous chats. Users answer
the questions posed by the moderator with tweets containing “a1:
...” to answer the first question. The chat ends with the moderator
thanking all the participants for a successful chat and announcing
the subject of the next chat.

Comments on Group Chats: We found the existence of support
groups quite surprising. One typically associates support groups
with a small number of people sitting around a circle, announcing
their name and telling their story. It is hard to imagine giving or
receiving support in 140 characters! But, with the same people
meeting week after week, getting to know each other better, the
platform has proven to be a place for support. Paraphrasing from
a mental health chat, users state that social media enables them
to access a support network, both those they know in real life, as
well as online contacts. They add that having a child with autism
spectrum disorder is very isolating.

Support groups are successful for a variety of reasons. Empathy
is the driving force, with users stating that “there is a family of us
out there”. In contrast to offline groups, the success of some online
support groups can be attributed to the pseudo-anonymous online
communication that is more comfortable than physical group meet-
ings, e.g., people say that they find group sessions hard, that they
hate opening up in front of others. In some cases finding others
who are in a similar situation is challenging. One user said that he
knew no one in his state that was transgendered. His trans world
was him, only him. In our experience as observers, we felt that we
had accidentally walked into a room full of people sharing personal
experiences. No one seemed bothered by the fact that anyone could
hear what they were saying.

Passion-related groups are also quite fascinating. In Movie Talk
on Sunday, a moderator pre-selects a theme, e.g., suspense movies,
and posts 10 questions ahead of time on a website that will be
tweeted every ten minutes. Participants tweet answers to questions.
The moderator and members retweet the answers they like. In this
group, participants derive value from the discussion. For example,
we find evidence of a user who decided to give a movie ‘Cabin in
the Woods’ a second try because so many in the group felt it was
the best movie of the summer of 2012. In other cases, we found
people thanking the group for gaining many new followers during
the chat. Finally, we even found evidence of two users now dating
after meeting on a group chat hashtag.

Group Chats over Time: Finally, we ask if group chats are a
growing or shrinking phenomenon on Twitter. To answer, for each
weekly group, we computed the birth of the group by finding the
first weekly meeting where at least 10 members tweeted during the
meeting and similarly the death of the group by the last weekly
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meeting where at least 10 members tweeted. Since our data is re-
stricted to a time-window, we cannot accurately find the birth date
of a group that was born before our data time-window. Also, if a
group is born towards the end of our time window, but has not had
five meetings yet, we will not be able to find it. Consequently, we
throw out the first few months and the last few months of the time
range and compute the cumulative number of births over time, the
cumulative number of deaths over time, as well as the net number
of living groups. The chart is shown in Figure 5. Interestingly,
the number of groups has indeed grown over time. However, even
though the number of births has increased, so has the number of
deaths. We do not understand what causes a group to grow or to
die, but it is a great subject for future work.
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Figure 5: The top curve shows the number of weekly group
chats born over time, the bottom curve shows the number that
died over time, while the middle curve shows the number of
weekly living groups over time.

Limitations: While our methods do indeed find group chats, we
know that there are some group chats that we miss. For example,
groups that meet the first Monday of the month are not found by
our method because the separation between meetings could be ei-
ther four or five weeks. If a group misses many meetings, it may
be difficult for our method to find. For example, ski chats are typ-
ically on hiatus over the summer. Other group chats that we miss
have irregularly spaced meetings, for example, if users agree on a
day/time for the next meeting at the end of each meeting. Also,
since our processing is hashtag related, our implementation over-
looks conversations that happen between users outside the context
of the group chat. Finally an ambiguously named group chat such
as tchat makes it difficult to tease out the group chat from alternate
uses of the hashtag.

7. CONCLUSIONS AND FUTURE WORK
We discovered a new phenomenon on Twitter - the use of hash-

tags to organize periodic, synchronized conversations. We gave a
formal definition of a group inspired by definitions from sociology.
We developed an algorithm for finding group chats and proved con-
ditions under which the algorithm successfully finds groups. We
ran our algorithm on over two years of tweets and discovered, hid-
den in plain view, 1.4K group chats involving 2.3 million users.
The data suggests that most of these groups meet weekly and that
the number of groups has been growing over time. Group chats are
an unintended use of the Twitter platform. The grassroots nature of
these organized groups demarcates a subset of Twitter containing
passionate users producing seemingly higher quality tweets.

Many fascinating questions are yet to be answered. We are very
curious to understand how these groups from. Since many of the
founders/moderators of these groups have public personas, it is in
theory possible to ask the founders how they created their group.

We also do not know how these groups grow and eventually die [5].
Previous studies of group formation [2] suggest that groups grow
by the number of friends one has in the group. However, we do
not know if this explains the growth of all kinds of groups, such as
support groups. Other studies suggest the importance of first im-
pressions [18, 3]. The general question of group dynamics [11]
in Twitter chats is untouched by the present work. We also do
not know why Twitter is the choice platform for these chats. The
140 character limit seems restrictive, but the resulting improved so-
cial standing one receives from tweeting in passion-oriented groups
may outweigh the character limit.

Some of the users who participate in these chats are quite knowl-
edgeable about the subject matter they are discussing. Understand-
ing and quantifying their expertise level is a promising direction for
future work. In addition, it is useful to find ways to summarize a
meeting of a group chat [10] in a manner that takes advantage of
the structure of a typical conversation. Finally, it will be important
to understand if the URLs exchanged in these group chats are of
particularly high quality.

The value that these chats bring to the individuals that participate
as well as to the community as a whole is not well-understood. We
believe that the benefit that users derive cannot be found without the
group. For example, the information that users learn from passion-
oriented groups may be hard to find without the group. Similarly,
the support that a user receives from a support group may be hard
to find without the group. We leave the question of measuring the
value of these groups as a promising direction for future work.
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APPENDIX
A. PROOF OF THEOREM 5.2

Notice that Definition 5.1 requires immediately that the any well-
behaved group chat pass the cohesion test. Further, any well-behaved
group chat will pass the test for being synchronized: Algorithm 3
will accept the chat because β(0) ≥ mnmin/(mnmin + (m −
1)n−) ≥ γ. The only real difficulty is in showing that (the modifi-
cation of) Algorithm 2 will accept the timeline of tweets. Lemma A.1
completes this last step, and the remainder of this section is devoted
to its statement and proof.

LEMMA A.1 (CORRECTNESS OF ALGORITHM 2). Let f be
the timeline satisfying the hypotheses of Theorem 5.2. Then the
periodicity coefficient of the correct period is at least

S(τ) ≥ (2η2)−1(1− 2πlτ−1 − ρ) (5)

and for any period τ ′ ≥ l for which |τ ′ − τ | ≥ l, the periodicity
coefficient is at most

S(τ ′) ≤ max

{
3ρ,

2πl

τ
+
η2

4

(
1 + 6

η + ρ− 1

ρ+ 1

)}
. (6)

PROOF. The periodicity coefficient of a period S(τ) is the prod-
uct of two terms, which we analyze in Sections A.2 (Fourier) and
A.1 (autocorrelation). The lower bound (5) on the true period’s
coefficient follows from Lemmas A.2 and A.7. The bound (6) on
other coefficients τ ′ is proved in cases. For τ ′ ∈ [l, τ − l]∪ [τ + l,
2τ − l], Lemma A.3 gives S(τ ′) ≤ |Af (τ ′)|/|Af (0)| ≤ 3ρ.

The remaining case is that τ ′ ≥ 2τ − l. We begin by approxi-
mating the term s = 2| sinπτξ| from the statement of Lemma A.8,
where ξ = 1/τ ′. By the concavity of the sine function on [0, π], we
have sinψπ ≥ ψ for ψ ∈ [0, 2

3
]. So for τ ′ ≥ 2τ − l ≥ 3τ/2, we

have s ≥ 2τ/τ ′. If τ ′ > mτ , then by Lemma A.4 the periodicity
coefficient is zero. Otherwise,(

m− τ ′/τ
m

)
s−1 ≤

(
m− τ ′/τ

m

)
τ ′

2τ
≤ m

8
.

So by Lemmas A.4 and A.8,

|f̂(1/τ ′)||Af (τ ′)|/|f̂(0)||Af (0)|

≤2πl

τ
+ η2

(
m− τ ′/τ

m

)(
2s−1

m
+

3

2
· η + ρ− 1

ρ+ 1

)
≤2πl

τ
+ η2

(
1

4
+

3

2
· η + ρ− 1

ρ+ 1

)
.

A.1 Results about Autocorrelation
Here we state results which say that the autocorrelation of the

true period is high, and that the autocorrelations of certain other
periods are low. We assume f satisfies the hypotheses of Theo-
rem 5.2. Proofs omitted for brevity.

LEMMA A.2. |Af (τ)|/|Af (0)| ≥ 1/(2η2).

LEMMA A.3. Let τ ′ be a period, and assume meetings in the
timeline f(t) are disjoint from meetings in the timeline f(t − τ ′).
Then |Af (τ ′)|/|Af (0)| ≤ 2mρ/(m− 1).

LEMMA A.4. |Af (τ ′)|
|Af (0)| ≤ max

{
0, η2

(
m−τ ′/τ

m

)}
.

A.2 Results about Fourier Coefficients
Here we state analogous results to those in Section A.1, but about

Fourier coefficients. The notation f will represent the timeline of
a well-behaved group chat. Note that for any function g, |ĝ(0)| =
|
∫∞
−∞ g(x)dx|: for timelines, the total number of tweets.

PROPOSITION A.5 (EFFECT OF NOISE).
Suppose g = g+ + g−. Then, for any frequency ξ, we have |ĝ(ξ)−
ĝ+(ξ)| ≤ |ĝ−(ξ)| ≤ |ĝ−(0)|.

PROPOSITION A.6 (EFFECT OF TIMING WITHIN MEETINGS).
Consider a timeline g consisting of α tweets at times t0, . . . , tα,
and a distorted version g′ with tweets at times t′0, . . . , t

′
α, where

∀j |tj − t′j | < l. Note that ĝ(0) = ĝ′(0). (Think of g with tweets at
starts of meetings, and g′ with tweets throughout meetings.) Then,
for any frequency ξ, |ĝ(ξ)− ĝ′(ξ)| < 2πlξα.

Combining Propositions A.5 and A.6, we have:

LEMMA A.7 (THE CORRECT FOURIER COEFFICIENT).
|f̂(1/τ)| ≥ (1− 2πl/τ − ρ)α, where α is the number of tweets.
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Finally, we show:

LEMMA A.8 (THE WRONG FOURIER COEFFICIENTS). Let ξ
be any frequency, and let s = 2| sinπτξ|. Then,

|f̂(ξ)| < nmin(2πlξm+2s−1)+m(nmax−nmin)+(m−1)n−.

In particular, if m ≥ 3, then

|f̂(ξ)|/|f̂(0)| < 2πlξ + 2s−1m−1 + 3(η + ρ− 1)/2(ρ+ 1).

PROOF. We will replace f by a simpler version fsimple. This
version will have no tweets between meetings. Every meeting will
have the same number of tweets nmin, and all the tweets will hap-
pen at meeting starts. Fourier coefficients of fsimple behave well,
and we can relate fsimple to f using Propositions A.5 and A.6.

Let f+ consist of tweets during meetings and f− the other tweets.
Now, change f+ to have nmin tweets in every meeting, by remov-
ing tweets from meetings that have more. Let f∗+ be the resulting
timeline, and fextra

+ = f+ − f∗+. Notice |f̂var
+ (0)| ≤ m(nmax

− nmin). Now, let fsimple consist of nmin tweets at the start of
each of the m meetings. By Prop. A.6, |f̂∗+(ξ) − f̂simple(ξ)| <
2πlξmnmin. Fourier coefficients of fsimple are geometric series:

|f̂simple(ξ)| =

∣∣∣∣∣
m∑
k=1

nmine
−2πi(kτ)ξ

∣∣∣∣∣ = nmin

∣∣∣∣∣
m∑
k=1

(e−2πiτξ)k

∣∣∣∣∣
=nmin

|(e−2πiτξ)m − 1|
|e−2πiτξ − 1| ≤

2nmin

|e−2πiτξ − 1| =
2nmin

s

Then |f̂∗+(ξ)| < nmin(2πlξm+2s−1). By Proposition A.5, |f̂(ξ)| <
nmin(2πlξm+ 2s−1) +m(nmax − nmin) + (m− 1)n−.

B. PROOF OF THEOREM 5.6
The case of a non-coherent set of messages is trivial (our algo-

rithm explicitly rejects such hashtags). Lemmas B.3 and B.4 com-
plete the proof in the case of the non-synchronized and non-regular
models.

B.1 Non-synchronized messages
For a rate function λ(t), let |λ|1 =

∫∞
−∞ λ(t)dt.

We will think of Algorithm 3 as having two parts. First, a hash-
tag’s timeline is compressed over an interval τ : each message time
ti is replaced with a message time 0 ≤ t′i < τ by subtracting a
multiple of the period τ . Second, the algorithm checks whether the
resulting timeline (t′i) is (γ, l)-diffuse, and if so, classifies the hash-
tag as a non-group chat. Lemma B.1 will show that the timeline
remains diffuse after the compression step, and then Lemma B.2
shows that Algorithm 3 will reject the hashtag with high probabil-
ity.

LEMMA B.1. Let λ be a function which is periodic with period
σ over the interval [0,mσ]. Assume λ is (γ∗, l)-diffuse over the
interval [0, σ]. Given a possibly longer period τ ≥ σ, define the
compressed function λτ (t) =

∑dmσ/τe
i=0 λ(t + iτ). Then λτ is

(2γ∗, l)-diffuse over [0, τ ].

We omit the proof due to space constraints.

LEMMA B.2. Suppose λ(t) is (γ∗, l∗)-diffuse on an interval
[0, τ ], and γ > γ∗ and l < l∗. If timeline t is sampled with a
Poisson process of varying rate λ(t), then t is (γ, l)-diffuse with
probability 1 − O(1)2−Ω(|λ|1). (The coefficients in the O and Ω
depend on γ∗, γ, l∗/τ and l/τ .)

PROOF. Let ε = l∗ − l. We divide the interval [0, τ ] into over-
lapping intervals I1 = [0, l∗], I2 = [ε, l∗ + ε], . . . . (If an interval
[a, b] has b > τ , we consider it to “wrap around”: we replace it
by [0, b − τ ] ∪ [a, τ ], since Algorithm 3 works modulo τ .) There
are a total of τ/ε such intervals. Notice that any interval of length
l must fall completely into one of these intervals: so it suffices to
show that at most a γ fraction of messages will fall in any of the
intervals Ij , and then take a union bound, losing a factor of τ/ε.

We can think of the message times as being generated as follows:
first, the total number of messages α is sampled from a Poisson dis-
tribution with rate |λ|1, and then each message time t1, . . . , tα is
sampled independently from the probability distribution λ(t)/|λ|1.
Then with high probability, we have α > |λ|1/2. A Chernoff
bound shows that at most a γ fraction of these will fall in a given
interval Ij with probability 2−Ω(α).

Combining Lemmas B.1 and B.2, we have the following:

LEMMA B.3. Let λ be a rate function that is periodic with a pe-
riod of one day on the interval [0,m days], and is (γ/2− ε, l+ ε)-
diffuse on the interval [0, 1 day] (where γ and l are parameters of
the algorithm, and ε is any positive constant). Then with probabil-
ity 1 − O(1)2−Ω(|λ|1), a timeline sampled with rate λ(t) will be
rejected by Algorithm 3 for any period τ which is at least one day.
(The coefficients in theO and Ω depend on ε and the parameters of
the algorithm.)

B.2 Non-regular messages

LEMMA B.4. Let f be the timeline of a set of messages gener-
ated according to the non-regular model. Assume the threshold γ
of Algorithm 3 is strictly greater than 2l/τmin, where τmin is the
shortest period considered by Algorithm 2. Then with probability
1 − O(1)2−Ω(Tλ), Algorithm 3 (and therefore Algorithm 1) will
reject f . The coefficients in the O and Ω depend on γ, l and τmin.

PROOF. We follow a similar strategy to the proof of Lemma B.2,
except that in order to bound the number of messages that occur
in an interval I = [a, a + l∗], we instead bound the number of
meetings that start at any point in the interval [a− l, a+ l∗]. This is
sufficient, since only those meetings can have any messages in the
interval I .

First, let τ ≥ τmin be the period found by Algorithm 2. Set
l∗ = γτmin/2 > l, and set ε = l∗ − l. As before, we divide [0, τ ]
into τ/ε different intervals I1 = [0, l∗], I2 = [ε, l∗ + ε], . . . . It is
enough to show that after compression (mapping each time to one
in the interval [0, τ ]) at most a γ fraction of the messages will fall
in any interval Ij ; then we complete the proof by taking a union
bound.

To bound the number of tweets that arrive in an interval Ij =
[a, a+ l∗], it is enough to bound the number of meetings that start
in the interval I ′j = [a − l, a + l∗], since only such meetings can
contribute messages to the interval Ij . This can be done in the same
way as in the proof of Lemma B.2.
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